
BallPhysics.pde Sun Jan 06 20:47:17 2019 1

1: /**

2: * A basic physics simulation using a class to define a

3: * Ball object that is under the influence of gravity, and

4: * that can collide with other objects.

5: *

6: * This code is also used as a demonstration of proper coding

7: * style. It shows how to comment the program, variables,

8: * classes, and functions. Additionally, it showcases good

9: * variable names, indentation, and whitespace.

10: *

11: * @author Jason Healy

12: */

13:
14: /** A collection of all the balls in the simulation */

15: Ball[] balls = new Ball[10];
16:
17: /** Processing setup function: runs only when the program begins */

18: void setup() {
19: size(800, 600);
20: // populate each space in the array with a randomly-generated
21: // ball
22: for (int i = 0; i < balls.length; i=i+1) {
23: balls[i] = new Ball(random(width), random(height));
24: }
25: }
26:
27: /** Processing draw function: run automatically for each frame */

28: void draw() {
29: background(0);
30: // have each ball render itself to the screen
31: for (int i = 0; i < balls.length; i=i+1) {
32: balls[i].render();
33: }
34: }
35:
36: /** Processing mouse event handler

37: * When the user presses the mouse, impart some additional

38: * velocity to each of the balls so they jump up on the screen

39: */

40: void mousePressed() {
41: background(0);
42: for (int i = 0; i < balls.length; i=i+1) {
43: balls[i].pop();
44: }
45: }
46:
47:
48: /**

49: * A Ball is represented by a circle on the screen. Every Ball

50: * moves with its own velocity, and is capable of being influenced

51: * by gravity and by colliding with the sides of the screen and

52: * other Balls.

53: */

54: class Ball {
55: /** Radius of each ball */
56: int radius = 25;
57:
58: /** Array of possible colors (alternated when it collides) */
59: color[] c = {
60: color(255, 0, 0, 255), color(0, 255, 0, 255), color(0, 0, 255, 255)
61: };
62:
63: /** X location of the Ball on the screen */
64: private float x;
65: /** Y location of the Ball on the screen */

BallPhysics.pde Sun Jan 06 20:47:17 2019 2

66: private float y;
67:
68: /** X velocity */
69: private float vx;
70: /** Y velocity */
71: private float vy;
72:
73: /** Timestamp (millis) since the last update; used to
74: * calculate accelerations and velocities */

75: private int last;
76:
77: /** Number to track which color to use for the Ball;
78: * it is an index into the colors array "c" */

79: private int colour = 0;
80:
81: /** Tracks whether this Ball has been pressed by the mouse */
82: private boolean pressed = false;
83:
84:
85: /** Constructor. Initializes Ball at the given coordinates
86: * and assigns a random initial velocity. */

87: Ball(float x, float y) {
88: this.x = x;
89: this.y = y;
90: vx = random(-width/10, width/10)*10;
91: vy = random(-height/10, height/10)*10;
92: last = millis();
93: }
94:
95: /** Updates the Ball based on physics engine, and then
96: * renders the Ball to the screen. */

97: void render() {
98: // determine how long it’s been since the last update
99: int now = millis();
100: float elapsed = (now - last) / 1000.0;
101: last = now;
102:
103: // change position based on velocity and elapsed time
104: x += elapsed * vx;
105: y += elapsed * vy;
106:
107: // change y velocity based on gravity
108: vy += elapsed * 1000;
109:
110: // bounce off the left and right sides of the screen
111: if ((x < radius && vx < 0) || (x > width-radius && vx > 0)) {
112: vx *= -0.9;
113: }
114: // bounce off the top and bottom sides of the screen
115: if ((y < radius && vy < 0) || (y > height-radius && vy > 0)) {
116: vy *= -0.9;
117: }
118:
119: // try to collide with every single other Ball in the program
120:
121: // start with the first Ball in the array
122: int i = 0;
123: // loop through all the Balls "before" this one in the array
124: // and ignore them
125: while (balls[i] != this) {
126: i=i+1;
127: }
128: // now skip "this" Ball (so we don’t collide with ourself)
129: i=i+1;
130:

BallPhysics.pde Sun Jan 06 20:47:17 2019 3

131: // finally, actually try to collide with all the remaining
132: // Balls in the array. Because we skipped the ones "before"
133: // us in the array (and all the others will do the same),
134: // only one collision between any two Ball objects is ever
135: // attempted.
136: while (i < balls.length) {
137: collide(balls[i]);
138: i=i+1;
139: }
140:
141: // now that all the physics updates are done, render the
142: // ball on screen
143: noStroke();
144: fill(c[colour]);
145: ellipse(x, y, radius*2, radius*2);
146: }
147:
148: /** Rotate to the next color in the array. */
149: void bump() {
150: colour = (colour+1)%c.length;
151: }
152:
153: /** Give a random "kick" in y velocity to this Ball. */
154: void pop() {
155: vy = random(-height, 0)*2;
156: }
157:
158: /** Attempt to collide with another Ball object (passed
159: * as a parameter). */

160: void collide(Ball o) {
161: // see how far apart the centers of both Ball objects are
162: float overlap = 2*radius - dist(x, y, o.x, o.y);
163:
164: if (overlap < 0) {
165: // no collision if they aren’t touching...
166: // just return without doing anything else
167: return;
168: }
169:
170: // If we didn’t return above, there must be some overlap
171:
172: // get the angle that this ball collides with the other
173: float theta = atan2(o.y-y, o.x-x);
174:
175: // generate a force (velocity change) along the axis
176: // that connects the two balls, pushing away from the
177: // point of contact
178: // 7-10 is a fudge factor to make the bounces look good
179: vx -= cos(theta) * radius * 10;
180: vy -= sin(theta) * radius * 10;
181: o.vx += cos(theta) * radius * 10;
182: o.vy += sin(theta) * radius * 10;
183:
184: // move the balls apart so they’re no longer touching
185: x -= cos(theta) * overlap / 2;
186: y -= sin(theta) * overlap / 2;
187: o.x += cos(theta) * overlap / 2;
188: o.y += sin(theta) * overlap / 2;
189:
190: // tell each Ball to "bump" so its color changes
191: bump();
192: o.bump();
193: }
194: }

