
Exile

Jason Healy, Director of Networks and Systems

Last Updated Mar 18, 2008

2

Contents

1 Exile 5

1.1 Introduction . 5

1.1.1 Synopsis . 5

1.2 History . 7

1.3 Design . 8

1.3.1 Requirements . 9

1.4 Theory of Operation . 10

1.5 Installing OpenBSD . 11

1.5.1 Pre-Installation Checklist 12

1.5.2 OpenBSD Installation . 12

1.5.3 Basic System Configuration 15

1.5.4 Perl Libraries . 17

1.5.5 Wrapping Up . 17

1.6 Installation . 17

1.6.1 Downloading . 17

1.6.2 Configuring . 18

1.6.3 Running . 19

1.7 Performance Graphing . 22

1.7.1 Warning . 22

1.7.2 Overview . 22

3

1.7.3 Installation . 22

1.7.4 Customization . 23

4

Chapter 1

Exile

Last updated 2008/03/18

1.1 Introduction

This document describes the motivation, design, configuration, and use of the
Exile shaping application. In brief, the software is designed to fairly distribute
internet bandwidth to clients on a network by penalizing (”exiling”) those who
use more than their fair share.

Note: this software is not a content- or filter-based solution, and so may not
be appropriate for your needs. Please read the Design section of this document
for more information.

In a hurry? Feel free to skip the History section of the document if you don’t
need to know why we started this project. However, please do read the Design
portion of this document, as it contains important details about how the software
works.

1.1.1 Synopsis

In short, the software works by keeping track of all the bandwidth used by every
host (IP address) on your network. If a host crosses a threshold of traffic (which
you set), they are ”exiled” to a lower tier of service. This in turn allows hosts
that haven’t used up their ”fair share” of bandwidth to have better access to the
bandwidth that is available. There are multiple thresholds and tiers, so hosts
may be exiled to different tiers depending on how much bandwidth they hog.

5

To help show this, consider the following graphs from our production system:

The colors range from green (no penalty) to red (maximum penalty). Note that
at the beginning (15:40), much of the bandwidth is being used by exiled users.
However, at 15:42 a new host starts using bandwidth. Because this new host
doesn’t have any penalties against it, it receives better access to the bandwidth.

You can see this because the amount of bandwidth given to the penalized users
(in red) goes down to ”make room” for the unpenalized user (in green). Addi-
tionally, looking at the ”dropped bits” graph, you can see that the system favors
dropping packets from the queues with larger penalties (red).

As time goes by, the new host begins to exceed the thresholds we’ve set, and
they start to fall under increasingly severe penalties (first blue, then yellow).
Thus, the system adapts over time to respond to users who hog bandwidth.
Had this user continued to exceed the thresholds we had created, they would
have eventually fallen into the maximum penalty queue (red) and stayed there
until they stopped hogging bandwidth.

Again, the goal of the system is to try to make things ”fair”, in the sense that
hosts who hog bandwidth should be penalized relative to other hosts who behave
well. Please read on (especially the Design section) for more detailed information
about how the system works, its strengths, and its limitations.

6

1.2 History

Like most residential schools, Suffield Academy suffers from a shortage of In-
ternet bandwidth. Educational and recreational use of the network soak up
bandwidth, and solutions that may work in the corporate world (strict filtering
or blocking) don’t work when users are in a residential setting.

Various solutions exist for prioritizing network traffic to improve (perceived)
performance of the link. Suffield has tried several, with varied results:

PacketShaper and MasterShaper Works by analyzing traffic at all seven
layers of the OSI model. Allows prioritization/limiting of traffic on a
per-application, per-port, per-address, or per-session level (among oth-
ers). Very fine-grained control, and the application-layer sniffing prevents
some port-hopping by malicious software.

BandwidthArbitrator and NetEqualizer Works by analyzing traffic and
”penalizing” bandwidth hogs. As the pipe fills up, penalties are cranked
up in order to keep bandwidth utilization at a reasonable level. The basic
version is GPL and freely available; the company also sells a ready-made
appliance under the NetEqualizer brand.

QoS or Priority Queuing (various implementations) Many firewalls and
routers now support at least a basic level of prioritization. While not as
sophisticated as layer-7 shaping tools, it’s cheap (included), and doesn’t
require extra hardware. Unfortunately, it only really helps with broad clas-
sifications (give entire IP blocks priority over others), as distinctions at
the port or application level aren’t always practical or possible.

Initially, we favored shaping solutions based on the inspection model. This gave
us lots of control over ”bad” applications (peer-to-peer, mostly), and kept the
network running smoothly for ”real work”. Unfortunately, the ”bad” software
continues to try and evade detection through various means (port hopping,
encryption, or impersonation). Effective filtering requires up-to-date signatures,
and also a lot of horsepower to scan all the traffic.

In the case of free solutions (MasterShaper), keeping the filters up-to-date and
tuned correctly proved difficult. In our initial tests, it failed to spot certain key
types of traffic that we wanted to filter. On the commercial side, PacketShaper
kept up reasonably well with new filters, but as our pipe to the internet got
faster, the licensing costs soared.

We then evaluated the Bandwidth Arbitrator. It took a different approach to
managing bandwidth. Rather than try to filter every possible use of the pipe,
it worked to make sure that users weren’t using more than their ”fair share” of
the bandwidth. The machine uses the Linux kernel (with modifications to the

7

http://www.packeteer.com/
http://www.mastershaper.org/
http://www.bandwidtharbitrator.com/
http://netequalizer.com/
http://netequalizer.com/

bridging code) to track usage and apply ”penalties” to connections that appear
to use too much bandwidth. We tested the system out for a few weeks, with
mixed success. We used the GPL version of the software, which came with no
support and spotty documentation. The device did run, and it did limit over-
all bandwidth use. However, it failed to make a major improvement in overall
latency, and it was somewhat frustrating to administer. Finally, the documenta-
tion was not clear enough on how to configure the device for our specific network
(it recommends leaving the settings alone and letting the software decide what
to do, but it didn’t seem to be doing well enough for us). E-mails to the authors
were not returned.

Faced with this, we decided to implement our own system. Convinced that
application-layer filtering would only get more difficult over time, we modeled
our system on the Bandwidth Arbitrator, though it works on a slightly dif-
ferent principle and is configured in a different way. Please read on for more
information.

1.3 Design

This software operates under a few fundamental principles:

• There exists a shared link (which may be asymmetric) which can become
oversubscribed.

• Individual users should be free to use most (or all) of this bandwidth
without restriction, so long as there is bandwidth to spare.

• Users who take up more than their fair share of bandwidth should be
given lower priority in the future, and possibly have additional restrictions
placed on them.

• No content or port analysis is performed.

That last one is important - go back and read it again. Basically, the software
takes a very direct approach to managing bandwidth: you get a certain ”fair
share”, and if you go over that you get penalized. If you want to use all your
bandwidth up on P2P applications, that’s fine, but don’t expect your online
games to have a decent ping time. We don’t care how you spend your bandwidth,
and by working this way we free ourselves from worrying about filtering every
single type of traffic.

If you need a solution that will prioritize traffic based upon destination, port,
or application, use something else. The purpose of this software is to improve
the overall performance of the link, but it is completely content-agnostic. If you
want to prevent users from running P2P apps, you need something else.

8

1.3.1 Requirements

The exiler software is written to uses existing open-source projects to accomplish
its tasks:

• Perl 5.8+. Other versions of Perl may work as well; the features used by
the scripts are not terribly esoteric, and the required modules are easy to
find.

• OpenBSD 4.0 (the base operating system). We use OpenBSD because it
has a built-in packet-queuing system (ALTQ - part of the PF package).
Other versions of OpenBSD should work just as well, and it’s possible that
systems using PF (such as FreeBSD) may work, though this has not been
tested.

• Net::Pcap (for traffic capture). This is a Perl module which interfaces
directly to the pcap libraries on your system for capturing packets. The
script uses this library to capture traffic. OpenBSD 4.0 includes a pre-
packaged version of this library in its packages tree.

• Unix::Syslog (for log messages). This is a Perl module which allows logging
information to be sent directly to the system. Because the script includes a
mode that auto-daemonizes, we include this functionality to automatically
log messages. For vehement anti-sysloggers, the logging code is highly
centralized and easy to disable, so this software isn’t vital to the function of
the software. OpenBSD 4.0 includes a pre-packaged version of this library
in its packages tree.

Hardware requirements are a little trickier; the primary concerns are having
enough processing power to analyze the traffic in real-time, and having enough
bus speed to bridge the packets without slowing them down unnecessarily. Mem-
ory is not a major concern (scales linearly with the number of active IP ad-
dresses), and disk space is almost an afterthought (a base OpenBSD install +
10MB should do it). To this effect, you should concentrate on getting a machine
with a fast processor, good NICs, and a solid interconnect (e.g., PCI-X).

You’ll need three network interface cards (NICs). One is used for interfacing
with the system (Unix hackers can eliminate this NIC if they want), and the
other two are used as in/out for the pass-through connection. The two bridge
NICs should be as high-quality as possible; some old or cheap NICs flake out
when bridged or run under heavy load. Again, YMMV.

As a single data point, consider our system: we have an asymmetric connection
that is 16Mb/s inbound and 2Mb/s outbound, and approximately 500 users. We
run the script on a 2.4GHz Intel Pentium 4 with 512MB of RAM. We have two
gigabit PCI NICs for the bridge, and a no-name 100Mb NIC for management.

9

http://www.openbsd.org/
http://search.cpan.org/dist/Net-Pcap/
http://search.cpan.org/dist/Unix-Syslog/

The system uses about 15-20% of its CPU time for the shaping (about half
of that is processing interrupts), and RAM usage for the script is usually well
under 16MB.

As always, each installation will have factors that affect performance. The major
impacts on this system are:

• Packets Per Second: processing is performed on each packet, so the
number of packets per second is more important than raw throughput (in
other words, lots of little packets is worse than fewer big ones, even if
throughput is lower).

• Number of Users: the script tracks each distinct IP it sees during a
sample period. The more users you have, the larger the data structures
get. Perl was built for fast hash accesses, so performance is good. More
users means more time spent processing.

• Number of Connections: the script also tracks connections from users
on the LAN with remote addresses (in order to penalize users who open
too many connections). However, tracking these connections takes time
and memory. If you do not wish to track connections, you may wish to
comment out the portion of the script dealing with connection tracking.

1.4 Theory of Operation

The software’s main goal is to watch the network traffic and assess penalties
(”exile”) users who cross certain thresholds.

The software runs on a machine configured as a bridge. Normally, a bridging
machine simply duplicates all traffic from one interface onto another. In this
case, though, the machine filters some of this traffic using OpenBSD’s PF-based
queuing.

By default, we use a 3x3 setup: there are three different samples that we draw
(seconds, minutes, and hours), and for each sample, there are three thresholds
(good, bad, and evil). Thus, there are 3*3*3, or 27 possible states that a user’s
traffic can end up in. There is nothing magical about this number; we could
have only 2 decisions at each level for a total of 8 states, for example. However,
one driving consideration is that OpenBSD supports only 62 queues for traffic
(unless the kernel is recompiled), so we strive for a number that falls within
this limit (remember that we have to worry about both inbound and outbound
traffic, so we actually have 2 * 27 or 54 queues in the default configuration).

The software listens for traffic using Net::Pcap, and keeps statistics for each
sample time (by default 9, 180, and 3600 seconds). Each time it draws a sample,

10

http://www.openbsd.org/faq/faq6.html#Bridge
http://www.openbsd.org/faq/pf/queueing.html
http://www.openbsd.org/faq/pf/queueing.html

it checks the total traffic for every IP address that has transmitted during that
time, and compares it to the thresholds for that time interval. IPs are then
assigned to queues based on the thresholds they exceed.

All of this is performed by the script automatically. The administrator must
configure the thresholds and penalties associated with each sample. For example,
a threshold might be something like ”average traffic greater than 60kb/s”. This
threshold could be applied to a particular sample, such as ”inbound traffic, 9
second sample”, or ”outbound traffic, 3600 second sample”. In this way, the
administrator determines what a ”reasonable” use of the link is, and has some
control over how strict depending on the time limit (for example, shorter sample
intervals might allow more average traffic, to account for burstiness in short
transfers).

The administrator also assigns penalties for each threshold. These penalties can
be percentage-based (relative to the amount of bandwidth the link ”should”
get if there were no penalties), or absolute. There are three types of penalties,
based on the Hierarchical Fair Service Curve parameters: realtime (guaranteed
bandwidth), linkshare (probability that a queue will be given excess bandwidth),
and upperlimit (cap on the amount of bandwidth a queue may ever use). By
specifying these parameters, the admin can give lousy service (via realtime),
lower priority (via linkshare), or throttling (via upperlimit) to a queue.

This document does not serve as a detailed introduction to HFSC; please visit
the following pages for more information:

• http://www.cs.cmu.edu/˜hzhang/HFSC/main.html

• http://marc.theaimsgroup.com/?l=openbsd-pf&m=110488079304643&w=2

• http://wiki.pfsense.com/wikka.php?wakka=HFSCBandwidthShapingNotes

• http://www.probsd.net/˜exile/hfsc.pf.conf

• http://www.monkey.org/openbsd/archive/misc/0402/msg00666.html

The software runs as a daemon on the machine, running through the process
described above.

Because the software integrates tightly with PF, the script includes modes for
auto-generating configuration files for PF.

1.5 Installing OpenBSD

Exile is developed and tested on OpenBSD. As part of the installation of the
software, you may need to install OpenBSD on the machine that will filter the

11

http://www.cs.cmu.edu/~{}hzhang/HFSC/main.html
http://www.cs.cmu.edu/~{}hzhang/HFSC/main.html
http://marc.theaimsgroup.com/?l=openbsd-pf&m=110488079304643&w=2
http://wiki.pfsense.com/wikka.php?wakka=HFSCBandwidthShapingNotes
http://www.probsd.net/~{}exile/hfsc.pf.conf
http://www.monkey.org/openbsd/archive/misc/0402/msg00666.html

traffic. If you’re well-versed in OpenBSD, feel free to skim this section to make
sure you have all the necessary software installed.

What follows are very cursory instructions for getting a basic OpenBSD sys-
tem installed. Please refer to the official OpenBSD documentation for more
information.

The instructions below are written for OpenBSD 4.0. Other versions may work
as well (we aren’t doing anything too fancy).

1.5.1 Pre-Installation Checklist

Before you start, make sure you have the following:

• A computer that supports OpenBSD (i386 PCs are very well supported)

• The hard drive of the machine must not have any other data that you
wish to save (we’ll be erasing it)

• 3 network interface cards (NICs) that are OpenBSD-compatible. Even the
no-name cards tend to work with OpenBSD, but we recommend checking
the OpenBSD web site and list archives to find models that offer the best
performance.

• An OpenBSD installation CD (or other installation media; see the OpenBSD
documentation for other options)

• A network connection to the internet, and all necessary configuration pa-
rameters (IP address, subnet mask, DNS servers, etc)

Install all the NICs into the machine (if you haven’t done so already). One
of the NICs will be the management interface (the one used to connect to
the machine and make changes). The other two are the bridging interfaces
(in/out) that the filtered traffic will cross. The bridging interfaces should be as
high-quality as possible (gigabit NICs are cheap, and worth the investment),
and should have the same speed (just by two of the same make and model).

Once you have all the items, proceed to the next section.

1.5.2 OpenBSD Installation

Booting

Boot the computer from the installation CD. A bunch of diagnostic text will
be displayed as the system searches for devices on the system. Eventually, you
should get a prompt that says:

12

(I)nstall, (U)pgrade or (S)hell?

Type I for install and hit return.

The system will ask for a terminal type; just hit return for the default.

The system will ask for a keyboard mapping; just hit return for the default.

You will be asked to make sure you don’t have any data on the disk that you
want to keep (you don’t, do you?). Type yes and hit return to continue.

Partitioning

The system will list all the available hard drives on the machine. Assuming you
only have one drive, it should be listed in brackets. Hit return to accept the
default disk as the installation target.

Answer yes when asked if you want to use the entire disk for OpenBSD.

Assuming there are no existing OpenBSD partitions on the disk, you will now
be put into fdisk (the partition editor). You need to create two partitions on
the disk: one for the main system, and one for virtual memory (swap).

Start by entering z to clear the partition table. Now type p to get some basic
information about the disk. The size of the disk is displayed as partition c:. All
numbers are in sectors (which are 512 bytes, or half a KiB).

In general, swap should be sized to 2 times physical RAM, though if you have
a lot of RAM it can be less. Leave the rest of the disk for OpenBSD. To figure
out how much space to set aside, multiply your RAM size in MiB by 4096 (1024
to convert MiB to KiB, 2 to convert KiB to sectors, and 2 to be double physical
memory). That will be the size of the swap partition. Subtract this number from
the total, and you know how large to make your main partition.

For example, suppose I have an 80GiB drive and 512MiB of RAM. My swap par-
tition should be 512 * 4096, or 2097152 sectors. My total disk space is 80418240
sectors, so my OpenBSD partition should be 78321088 sectors and my swap
partition should be 2097152.

To create the partitions, type a. For the main OpenBSD partition, select a as
the partition name (should be the default). Use the default offset (usually 63),
and the number of sectors you calculated above for the size (78321088 in our
example). For the filesystem, choose 4.2BSD (should be the default). For the
mount point, use the default of none.

Now type a again to create the swap partition. Choose b as the name, use
the default offset, and just hit enter for the size (it will default to taking the
remaining part of the disk). The filesystem should default to swap, which is

13

what you want.

Once you’re done, type q to save your changes and quit.

You’ll be asked (again) if you’re sure that you want to destroy everything. Make
sure you’re certain, and type yes.

The system will format the drive (which may take a few minutes).

Network Configuration

You’ll now be prompted to give a hostname to the machine. Pick one according
to your system naming scheme.

You’ll now be asked if you want to configure the network; say yes.

You’ll be given a list of interfaces to configure. Choose the one that will be the
management interface for this machine. If all your NICs are the same make and
model, it may be difficult to guess which one you want. I generally pick the one
with the lowest number, configure it, and move the ethernet cables if I guessed
wrong.

Work through the options for the interfaces, choosing DHCP options, IP ad-
dresses, and routes as necessary.

When you return to the interface menu, enter done (we don’t need to configure
the two bridged interfaces now).

Enter the domain name for this system.

Enter the nameserver(s) this machine should query.

Say yes when asked if you want to use the nameservers.

Enter the default route (gateway) for the network you’re on.

Say no to editing hosts by hand and manual configuration.

Base System Installation

Enter a root password for the machine, and verify it.

You’ll now be asked where the base system installation files are. Use http (unless
you have them somewhere else).

Enter any necessary proxy information when prompted.

If you don’t have a preferred mirror server that you use, enter yes to show a
list of available servers.

14

When prompted, enter a number from the list, or one of your hand-selected
servers. Provide any requested path information (or accept the defaults if you
picked from the list).

Now you’ll be asked what packages to install. The defaults are fine; we don’t need
any of the X11 packages (you may install them if you need them for something
else). If you’re really tight for space, you can deselect the games packages (and
possibly others), but only do so if you know what you’re losing.

Once you’ve made any package selections, type done to install them. Answer
yes to signal that you’re ready, and the system will download, decompress,
and install the requested packages. Depending on the speed of your network
connection, you may want to go grab something to drink.

When the installation is complete, the system will prompt you again for the
location of any installation media. Type done this time, as we’ve installed ev-
erything.

You will now be asked some minor questions about the default configuration of
the system. Make whatever choices fit with your usual policies (when in doubt,
go with the defaults).

Select a timezone for the system (e.g., US/Eastern).

A few final scripts will run, and then you should receive a message that the
system has been installed. Issue the halt command, and when the system has
halted you may eject the installation CD and reboot the computer using its
power switch.

The machine will now boot under its ”own steam”, and you’re ready to move
on to the next section.

1.5.3 Basic System Configuration

Your machine should now boot by itself to the login prompt. You may now log
in as root and you should get a basic command prompt.

At this point, ping a host to make sure your network is up, and everything
else seems in order. You can also make any necessary tweaks that you usually
make to the system (configuring syslog, changing command shells, installing
preferred editors and other tools, etc.). Once you’ve done that, come back to
this document (go ahead, we’ll wait).

15

NIC Configuration

You’ll need to tell OpenBSD to bring up your network cards at boot time. The
management interface should be up and running, so we need to bring up the two
bridging interfaces. Because the bridge will simply pass traffic from one interface
to the other, they do not need to have IP addresses, or any other configuration.

Your NICs will be listed in the output of the dmesg command; just scan for the
make of your card and it should show up with an identifier. For example, my
gigabit Intel cards show up as ”Intel PRO/1000MT”, with system identifiers of
em0 and em1.

Once you know the names of the bridge cards, type the following for each one,
substituting the interface name (e.g., em0) for IFNAME:

echo ’up’ > /etc/hostname.IFNAME

Bridge Configuration

Next, we need to tell OpenBSD which cards to bridge together. We do this by
echoing a few commands to a special bridge configuration file (substitute your
interface names for IFNAME):

rm -f /etc/bridgename.bridge0

echo ’add IFNAME1’ >> /etc/bridgename.bridge0

echo ’add IFNAME2’ >> /etc/bridgename.bridge0

echo ’up’ >> /etc/bridgename.bridge0

Enabling Forwarding

OpenBSD must be told to forward packets by default. To do so, edit the file
/etc/sysctl.conf and change the value of net.inet.ip.forwarding to 1.

Enabling PF

PF is the OpenBSD Packet Filter, which includes the queuing code we’ll use to
slow down IP traffic. To enable it, edit the file /etc/rc.conf.local and add
the following line:

pf=YES

16

Reboot and Check

Now that you’ve made all the necessary configuration changes, reboot the ma-
chine by issuing the following command:

shutdown -r now

When the machine reboots, log back in and type ifconfig. You should see all
of your network interfaces and the bridge as ”UP,RUNNING”. If you see that,
you’re ready to move on to the next section.

1.5.4 Perl Libraries

All of the Perl libraries that the script requires are available as packages for
OpenBSD. Unless you feel like rolling your own, all you need to do is install the
pre-compiled packages from your favorite OpenBSD mirror:

pkg_add http://openbsd.mirrors.pair.com/ftp/4.0/packages/i386/p5-Net-Pcap-0.04.tgz

pkg_add http://openbsd.mirrors.pair.com/ftp/4.0/packages/i386/p5-Unix-Syslog-0.100.tgz

That will install the Net::Pcap and Unix::Syslog Perl modules.

1.5.5 Wrapping Up

At this point, you have an OpenBSD machine that is correctly configured for use
with the software. Please proceed to the Installation section of this document
for information on setting up our software.

1.6 Installation

This section describes the installation and configuration of the actual Exile
software. Note: it is assumed that you already have an OpenBSD machine with
PF, bridging, and the required Perl modules installed. If you don’t, please read
the OpenBSD Installation section of this document and follow the directions
there before installing the software.

1.6.1 Downloading

As this is beta software, we currently only support downloads by directly check-
ing the code out from our Subversion repository. Don’t worry; it isn’t too diffi-

17

cult!

First, make sure you have a Subversion client installed. OpenBSD users can
install a prepackaged version by running:

pkg_add http://openbsd.mirrors.pair.com/ftp/4.0/packages/i386/subversion-1.3.2.tgz

Next, move into your /usr/local directory:

cd /usr/local/

Now, you’re ready to check out the project:

svn co svn://svn.suffieldacademy.org/netadmin/trunk/software/exile

That will create a directory called exile with all of the software contained
inside it.

If you ever need to update the software to the latest version, move into the
exile directory and run:

svn up

1.6.2 Configuring

Configuration requires a few distinct steps, which are outlined below. Please
note that the conf folder contains example configurations; you should copy
these configurations to your own files and make your changes there.

The example configurations are well-commented. Additionally, information about
the configuration parameters can be found in the script itself (by running
perldoc sbin/exiler).

Exile Parameters

Start by editing the main configuration file (we suggest making a copy of the
example.conf, renaming it, and customizing this file).

The example file has detailed comments; in short, you’ll need to perform the
following actions:

• Specify the paths and interfaces on your system

18

http://web.suffieldacademy.org/ils/netadmin/docs/software/exile/docs/../conf/example.conf

• Define the parameters of your network (subnets and bandwidth)

• Configure the thresholds and penalties

For first-time configurations, we recommend setting $DEBUG=1. This will cause
the script to run in the foreground and print more detailed information.

Two of the configuration variables are paths that point to the PF template and
local rule files (described below). We recommend using names that are specific
to your site, rather than the included ”example” files. Again, make copies of the
example files and rename them before customizing.

PF Template

The PF template file is a configuration file for OpenBSD’s packet filter. The
template allows you to define default policies, custom queues, and other rules
(such as tables). Additionally, it includes macros that the script will replace
with actual configuration variables.

Thus, you set up your custom rules and queues, and also insert the template
macros that will expand to the rules and queues that exile uses. If you’re not
sure what to put, use the example template (it has a reasonable, if not highly
secure, configuration).

Local PF Rules

Finally, you must create a ”local” PF rules file. This script contains rules that
will be executed before any of the exile rules are run. Additionally, these rules
will always be in effect, even when the exile rules are not active.

You can use these rules to send certain traffic to ”exempt” queues to prevent
exiling, or other custom items as you see fit.

If you’re not sure what to put here, use the example ruleset and customize the
interface options that are specific to your machine.

1.6.3 Running

The script can be run in several modes, depending on what you wish to accom-
plish. We describe the most common modes of operation below.

Note: all the examples below assume that you are in the exile directory (where
you installed the script). For example, if you put the script in /usr/local/exile,
then you should cd to that directory before running any of the commands below.

19

http://web.suffieldacademy.org/ils/netadmin/docs/software/exile/docs/../conf/example-pf.conf.template
http://web.suffieldacademy.org/ils/netadmin/docs/software/exile/docs/../conf/example-pf.conf.local

Also, running the script with no arguments will cause it to print a brief synopsis.

Generating Config Files

Before you can run the daemon, you must first generate the PF config files. This
can be accomplished by running the script with the ”gen” option:

./sbin/exiler gen conf/my-config.conf

This will parse the configuration file and build the PF configuration files. Inspect
the resulting file (which will be in run/pf/pf.conf by default) to confirm that
they are to your satisfaction.

You can test the generated files by executing:

pfctl -nf run/pf/pf.conf

If any errors are reported, you’ll need to correct them before continuing (most
common errors involve specifying too much bandwidth for a queue).

Note: PF may print warnings like:

the sum of the child bandwidth higher than parent

These errors are harmless, and have to do with the way that HFSC queues
operate in OpenBSD. Errors that you need to worry about will say ”syntax
error” in them.

Now you can load the new ruleset (note that this does not turn on exiling; it just
installs the framework that the exiling will plug into). Do this while logged
on through a console (in case there is an error in the config, which would
disconnect you if connected remotely):

pfctl -f run/pf/pf.conf

If the machine is still connected and traffic is passing normally, you are in good
shape.

If you want to make your generated ruleset load automatically on boot, add the
following line to /etc/rc.conf.local:

pf_rules=/path/to/exile/run/pf/pf.conf

20

Listening to Traffic

Now that the PF rules are loaded, you can run the script in ”listen” mode. This
will run the script in such a way that it does all of its normal work, but doesn’t
actually assign IP addresses to the penalized queues. It’s a good way to test the
configuration, and ensure that the machine is fast enough to listen to all the
traffic.

Run the script with the ”listen” option:

./sbin/exiler listen conf/my-config.conf

If debugging is enabled, you’ll see output as the script scans traffic and adds
or removes penalized IP addresses. On a separate terminal, you can consult the
files in run/q to see which addresses would have been penalized.

Exiling

Once you’re sure that your configuration is correct and listening well, you can
change to ”run” mode. This mode is equivalent to using ”listen”, but it enables
the PF rules to actually assign packets to queues. You can run it by typing:

./sbin/exiler run conf/my-config.conf

Note that you must have already generated and loaded the PF con-
figuration files.

If you prefer, you may manually achieve the same state as ”run” by executing
”qon” mode, and then ”listen” mode. This can be useful when the script is
running in daemonized mode and you don’t wish to terminate it. Using the ”qon”
and ”qoff” modes will disengage the actual penalizing process while leaving the
daemon in a mode to watch traffic.

You may find it helpful to use the pftop program to watch the queue assign-
ments. A pre-compiled version is available for OpenBSD:

pkg_add http://openbsd.mirrors.pair.com/ftp/4.0/packages/i386/pftop-0.5.tgz

Run pftop and switch to the queue assignment screen. You’ll see real-time
updates of the amount going to each penalty queue.

Additionally, we’ve created some scripts to graph the performance of the appli-
cation in near-real-time. Please read on for more information on setting up this
service.

21

1.7 Performance Graphing

1.7.1 Warning

Note: the scripts for performance graphing are still under development, and
currently are coded with settings that are specific to Suffield Academy. The
script should be easy to modify, but please keep in mind that they are not as
simple to configure as the main application.

1.7.2 Overview

To track the performance of the exiler application, we’ve written a simple dae-
mon that collects data from the exile queues and stores them in RRD (Round
Robin Database) files. Another script queries these files and generates graphs
of the performance of the application (for an example of the graphs generated,
please see the Introduction section of this document).

1.7.3 Installation

The software uses the ”rrdtool” package to perform its data capture and graph-
ing. Thus, you should begin by installing RRDtool on your machine. There is a
pre-compiled package for OpenBSD; you can install it by running:

pkg_add http://openbsd.mirrors.pair.com/ftp/4.0/packages/i386/rrdtool-1.0.49p3.tgz

Once you’ve install RRDtool, you can look at our scripts. If you’ve checked out
the exile directory from our Subversion repository, you already have all the
necessary scripts. They live in subdirectories of the rrd directory.

There are three subdirectories of the rrd directory. Briefly:

• The bin directory contains the daemon script which collects data from
the system and stores it in RRD files.

• The cgi-bin directory contains a Perl CGI script which accesses the RRD
files and produces graphs of the data.

• The rrds directory is where the scripts store the saved RRD files (by
default – you may change the path to whatever you wish).

The exile queue rrds script in the bin directory should be launched by root.
It will fork to the background and begin collecting statistics about all OpenBSD

22

PF queues on the system. The results will be stored in RRD files in the directory
provided as the first argument to the script.

If you like, you may add a line to launch the script to /etc/rc.local so it
begins running automatically on startup.

The exile queues script in the cgi-bin directory must be run from within a
web server. Edit the script to provide the correct path to the RRD files (this
should be the same as the argument you passed to exile queue rrds above),
and then run from a web browser.

If you don’t have a web server installed, you might try thttpd (part of the
OpenBSD ports collection). It’s a very small and lightweight HTTP server, and
can easily be set up to run our CGI. For example, if the exile directory is installed
at /usr/local/exile, you can execute thttpd as:

thttpd -p 80 -d ’/usr/local/exile/rrd’ -c ’/cgi-bin/*’ -u www

and be able to browse to http://yourhost/cgi-bin/exile queues to try the script
out immediately.

1.7.4 Customization

At this time, all the RRD scripts use hard-coded values for their configuration.
If you wish to make changes, you’ll need to edit the source code directly. The
current values are reasonable for a machine that only runs the exile application,
but if you customize the machine you may need to change a few of the settings.
Anyone with some experience using Perl should be able to make the necessary
changes.

23

http://yourhost/cgi-bin/exile_queues

	Exile
	Introduction
	Synopsis

	History
	Design
	Requirements

	Theory of Operation
	Installing OpenBSD
	Pre-Installation Checklist
	OpenBSD Installation
	Basic System Configuration
	Perl Libraries
	Wrapping Up

	Installation
	Downloading
	Configuring
	Running

	Performance Graphing
	Warning
	Overview
	Installation
	Customization

