
PostgreSQL

Jason Healy, Director of Networks and Systems

Last Updated Mar 18, 2008



2



Contents

1 PostgreSQL 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Debian Linux . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Tablespaces . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Host-based Authentication . . . . . . . . . . . . . . . . . 13

1.3.4 Allowing Remote Access . . . . . . . . . . . . . . . . . . . 14

1.3.5 Autovacuum . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.6 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.7 Tweaking Kernel Memory Parameters . . . . . . . . . . . 15

1.3.8 PostgreSQL Shared Memory Parameters . . . . . . . . . . 16

1.3.9 Speeding Up Disk Access . . . . . . . . . . . . . . . . . . 17

1.4 PostgreSQL Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Server Management . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Manual Interaction . . . . . . . . . . . . . . . . . . . . . . 19

1.4.3 Programatic Access . . . . . . . . . . . . . . . . . . . . . 20

1.5 Backing Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3



1.5.1 Suffield Overview . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.2 The “postgresql archive“ Script . . . . . . . . . . . . . . . 22

1.6 Restoring From Backup . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.1 Point-In-Time Recovery (PITR) . . . . . . . . . . . . . . 23

1.6.2 SQL Dump Recovery . . . . . . . . . . . . . . . . . . . . . 25

4



Chapter 1

PostgreSQL

Last updated 2008/03/18

1.1 Introduction

PostgreSQL (pronounced ”post-gress-cue-ell”, or ”postgres” for short) is an
open-source relational database engine. The database runs on Unix variants
(Linux, BSD, Mac OS X), as well as Windows. Clients can connect to the
database using native clients or JDBC. Interaction with the database is per-
formed using SQL. For more information about the features of PostgreSQL,
please visit the project’s web page:

http://www.postgresql.org/

PostgreSQL is an alternative to other SQL-based database products, such as
MySQL, Microsoft SQLServer, Oracle, and FileMaker (note, however, that File-
Maker has a built-in GUI tool which most other databases do not have). In terms
of free database engines, PostgreSQL ”competes” most directly with MySQL.
Suffield uses PostgreSQL because it is free, robust, and has some features that
MySQL lacks. Additionally, while most MySQL software can be made to run
under PostgreSQL, the reverse is not always true.

A full explanation of relational database systems is beyond the scope of this
document; it is assumed that the reader is familiar with the basic concepts of
relational databases, tables, columns, data types, and SQL queries.

This document describes the basic installation, setup, use, and maintenance of
a PostgreSQL database server.

5

http://www.postgresql.org/files/postgresql.mp3
http://www.postgresql.org/


1.2 Installation

Suffield uses Mac OS X and Debian Linux as its primary server platforms. Please
follow the instructions for the appropriate platform.

1.2.1 Debian Linux

Debian Linux supports PostgreSQL as a package in their standard distribution.
Install the postgresql and postgresql-client packages for the latest stable
version, or include a version number to get a specific revision:

apt-get install postgresql-8.2 postgresql-contrib-8.2

The packages will be downloaded and installed automatically.

Note that different versions of Debian support different versions of PostgreSQL
in their package repositories. Also, depending on the relase dates of Debian and
PostgreSQL, you may not be able to get the latest version in your distribution.

To get the latest version in Debian, you can use ”apt-pinning” to draw in se-
lected files from unstable distributions of Debian. To do this, add the ”back-
ports”, or ”unstable” (or possibly ”experimental”) releases of Debian to your
/etc/apt/sources.list:

# only need one of these!

deb http://www.backports.org/debian etch-backports main contrib non-free

deb http://debian.lcs.mit.edu/debian/ unstable main

deb http://debian.lcs.mit.edu/debian/ experimental main

Then, set the pin-priority for these new releases in /etc/apt/preferences (cre-
ate the file if it doesn’t exist):

Package: *

Pin: release a=stable

Pin-Priority: 700

Package: *

Pin: release a=etch-backports

Pin-Priority: 650

Package: *

Pin: release a=unstable

Pin-Priority: 600

Package: *

Pin: release a=experimental

Pin-Priority: 500

6



Note that the ”stable” distribution has the highest priority. This means that
only packages that cannot be found in the stable distribution will be fetched
from the unstable distribution.

Now you can run apt-get update and install the version of PostgreSQL you’d
like.

1.2.2 Mac OS X

Note that PostgreSQL can be installed on a regular ”client” build of Mac OS
X; you do not need the ”server” version of the OS.

Mac OS X supports several methods for installing PostgreSQL: via Fink, Dar-
winPorts, or PostgreSQL Tools for Mac OS X. The first two are packaged in-
stallers using a build or package framework (DarwinPorts is like ”ports” for
BSD, and Fink is like ”apt-get” for Debian). The latter is a native Mac OS X
package that installs independently of other software.

However, most of these packaging systems only install the base version of the
server. We have since switched to compiling our own binary direct from source,
as this gives us access to some necessary extensions for the software. Don’t
worry; this isn’t difficult at all (the software builds cleanly on Mac OS X with
no additional dependencies).

Downloading

To obtain PostgreSQL, just visit their website:

http://www.postgresql.org/ftp/source/

That’s a direct link to their source section; you can also go to their main site
and follow links to their download section.

Download the full source distribution (it’s the one that’s called postgresql-X.Y.Z.tar.bz2).
The base, docs, opt, and test tarballs are all included in this file, so you don’t
need to download them separately.

Compiling and Installing PostgreSQL

You’ll need to have a compiler available on the machine, which means installing
Apple’s Developer Tools CD. You can get it from:

http://connect.apple.com/

Once the developer tools are installed, you’re ready to build PostgreSQL.

7

http://fink.sourceforge.net/
http://www.darwinports.org/
http://www.darwinports.org/
http://sourceforge.net/projects/pgsqlformac/
http://www.postgresql.org/ftp/source/
http://www.postgresql.org/
http://connect.apple.com/


Unpack the tarball into a directory that’s stable (we want to keep the com-
piled sources around for extensions, so don’t put the sources anywhere that’s
temporary):

tar -jxf postgresql-X.Y.Z.tar.bz2

cd postgresql-X.Y.Z

Now it’s time to run the configure script. Nearly all the options that Post-
greSQL uses are supported out-of-the-box by Mac OS X, so we enable most
of the options. We tell the configure script to place the resulting software in
/opt/postgresql-X.Y.Z, though you may choose to put it almost anywhere
(/Applications, /Library/PostgreSQL, etc.):

./configure --prefix=/opt/postgresql-X.Y.Z --with-perl --with-tcl \

--with-python --with-krb5 --with-pam --with-ldap \

--with-bonjour --with-openssl

Once the configure script has completed, you’re ready to build the software.
Run make:

make

And wait for the compilation to finish. Assuming there are no errors, you may
now install the software:

sudo make install

You now have a base installation of PostgreSQL installed.

Compiling and Installing Extensions

In addition to the base install, we install a few extensions that are useful, or
required by other software that uses PostgreSQL. These programs live in the
contrib directory in the source folder, so we must move there first:

cd contrib

First, we build the tsearch2 full-text search engine:

cd tsearch2

make

sudo make install

cd ..

8



We also use the xml2 extensions:

cd xml2

make

sudo make install

cd ..

The full suite of software is now installed.

Account Creation

You must create a postgres user account on your machine, if one does not
exist already. You can do this using the usual account creation tools (System
Preferences or Workgroup Manager), or you can do it from the command
line using this script:

#!/bin/bash

NAME="postgres"

HOME="/opt/postgresql-X.Y.Z"

# Check to see if the user exists or not

nicl . -read /users/${NAME} >/dev/null 2>&1

if [ $? != 0 ]; then

echo "User ${NAME} does not exist; creating..."

# delete any pre-existing group with our name (shouldn’t happen)

nicl . -delete /groups/${NAME} >/dev/null 2>&1

# Find the next shared UID/GID that’s between 100 and 500

lastid=‘(nireport . /users uid ; nireport . /groups gid) | sort -n | uniq | egrep -v ’^([0-9]{1,2}|[5-9][0-9]{2,}|[0-9]{4,})[^0-9]+’ | tail -1‘

id="‘expr $lastid + 1‘"

# in the case that there is no ID over 100 to come after, just start at 200

if [ ${id} -lt 100 ]; then

id=200

fi

# create new group

echo "Creating group ${NAME} with GID $id"

nicl . -create /groups/${NAME}

nicl . -createprop /groups/${NAME} gid ${id}

nicl . -createprop /groups/${NAME} passwd ’*’

echo "niutil: group ’${NAME}’ added."

echo "Creating user ${NAME} with UID ${id}"

nicl . -create /users/${NAME}

nicl . -createprop /users/${NAME} uid ${id}

nicl . -createprop /users/${NAME} gid ${id}

nicl . -createprop /users/${NAME} passwd ’*’

nicl . -createprop /users/${NAME} change 0

9



nicl . -createprop /users/${NAME} expire 0

nicl . -createprop /users/${NAME} realname "PostgreSQL Database"

nicl . -createprop /users/${NAME} home "${HOME}"

nicl . -createprop /users/${NAME} shell ’/usr/bin/false’

nicl . -createprop /users/${NAME} _writers_passwd "${NAME}"

echo "niutil: user ’${NAME}’ added."

else

echo "User ’${NAME}’ already exists; not creating it again"

fi

Note that the password is blanked out for security purposes. If you create the
script using a GUI tool, you should disable the password.

Finally, you’ll need to create two directories and own them to the postgres

user:

mkdir /opt/postgresql-X.Y.Z/data

mkdir /opt/postgresql-X.Y.Z/log

chown -R ${NAME}:${GROUP} /opt/postgresql-X.Y.Z/data

chown -R ${NAME}:${GROUP} /opt/postgresql-X.Y.Z/log

chmod 700 /opt/postgresql-X.Y.Z/data

Cluster Creation

A new database cluster must be initialized before it can be used. This is done
by running the initdb command as the postgres user:

sudo -u postgres /opt/postgresql-X.Y.Z/bin/initdb -D /opt/postgresql-X.Y.Z/data

The database is now initialized and ready to run.

PATH setup

By default, the server and client binaries are installed in /opt/postgresql-X.Y.Z/bin.
To enable local machine users to use these binaries without having to specify the
full path, you should add a stanza similar to the following to your /etc/profile
(for system-wide effect), or to your ~/.profile (single user):

if [ -d /opt/postgresql-X.Y.Z/bin ]; then

PATH=${PATH}:/Library/PostgreSQL8/bin

export PATH

fi

10



LaunchDaemon Startup

If you’ve installed on a machine running Mac OS X 10.4 or later, you may wish
to use launchd to start and stop the database engine. To do so, follow these
steps:

1. Copy our LaunchDaemon plist to the /Library/LaunchDaemons/ direc-
tory on the database server.

2. Customize the plist file to include the correct path to the server (replace
X.Y.Z with your actual version of PostgreSQL).

3. Start the server using launchd:

sudo launchctl load -w /Library/LaunchDaemons/org.postgresql.postmaster.plist

4. Confirm that the server is running:

ps auxwww | grep postgres

You should see several entries for the database processes.

1.3 Configuration

Once the database is installed, you should take a few minutes to configure the
database engine. Most of these configuration options have to do with network
security and who is allowed to access the database.

Under Mac OS X, the configuration files live in the data folder, relative to where
you installed the software:

/opt/postgresql-X.Y.Z/data

You’ll need to be a super-user or the user postgres in order to access this
location on the hard drive. To become the postgres user, execute the following:

sudo -u postgres /bin/bash

That will give you a login shell as the postgres user. You can then enter the
directory listed above.

11

http://web.suffieldacademy.org/ils/netadmin/docs/software/postgresql/docs/../LaunchDaemons/org.postgresql.postmaster.plist


1.3.1 Schemas

A PostgreSQL cluster may contain one or more databases. Each one of these
databases is logically separated from the others; tables, functions, triggers, and
other objects in a database cannot affect others. This is desirable because it
allows different applications to have their own databases without conflicting
with each other.

However, this also prevents sharing information between two databases. At
Suffield, we have several different applications that rely on a database, and
sometimes we’d like to tie these data together. For example, we might have
a database with user information, and another database with phone account-
ing records. Ordinarily, the applications that use these databases know nothing
about each other. However, we might wish to run a report that correlates phone
usage with user names.

In earlier versions of PostgreSQL, the only way to share data was to assign all ta-
bles to the same database. This was problematic, because different applications
might each want a table with the same name (e.g., ”users”).

With recent versions of PostgreSQL, we can use the schema feature:

http://www.postgresql.org/docs/current/static/ddl-schemas.html

Schemas allow multiple applications to share the same database, but each have
their own namespace for tables and other objects. This way, applications can
operate on their own data (just like they would in separate databases), but also
cross to other schemas to get data from other applications.

To create a schema, just issue the following:

CREATE SCHEMA myschema AUTHORIZATION myuser;

That creates a schema and assigns all rights to the given user (you may omit
the AUTHORIZATION portion if you don’t want to assign the privs to another
user).

Now you can create tables (or other objects) within the schema:

CREATE TABLE myschema.foo(...);

Note the fully-qualified name. If you don’t want to specify that for every table,
you may set the default schema for a user by executing:

ALTER USER myuser SET search_path TO myschema;

12

http://www.postgresql.org/docs/current/static/ddl-schemas.html


1.3.2 Tablespaces

PostgreSQL allows you to store different parts of the database on different logical
volumes:

http://www.postgresql.org/docs/current/static/manage-ag-tablespaces.html

For systems with multiple disks, this allows you to spread the load to different
disks, or to assign different tables to filesystems with different levels of perfor-
mance, reliability, or size.

To create a new tablespace, make a directory on a logical filesystem and own
it to the PostgreSQL database user. Then, issue the following command in the
PostgreSQL shell:

CREATE TABLESPACE spacename LOCATION ’/path/to/spacename/dir’;

Now, when you create a table in PostgreSQL, supply the tablespace as the final
argument. For example:

CREATE TABLE foo(bar VARCHAR) TABLESPACE spacename;

If you’d like to permanently set the default tablespace for a particular user (so
you don’t need to specify it for each table), you can issue the following:

ALTER USER myuser SET default_tablespace TO spacename;

This may be helpful when you wish to set a user to always default to a given
tablespace.

1.3.3 Host-based Authentication

Once remote access has been turned on, we PostgreSQL must be told which
machines and users may connect to which databases. This is done by editing
the pg hba.conf file.

Generally, you should only allow connections from known, trusted machines.
Additionally, you should only allow connections from given usernames to specific
databases whenever possible. We make an exception for ”localhost” so that users
can connect directly on the database machine itself.

Below is our sample pg hba.conf file:

# Database administrative login by UNIX sockets

13

http://www.postgresql.org/docs/current/static/manage-ag-tablespaces.html


local all postgres ident sameuser

# TYPE DATABASE USER CIDR-ADDRESS METHOD

# "local" is for Unix domain socket connections only

local all all ident sameuser

# IPv4 local connections:

host all all 127.0.0.1/32 md5

# IPv6 local connections:

host all all ::1/128 md5

# Allow "testuser" to connect from a particular machine

host suffield testuser 172.30.0.40/32 md5

# Reject all others

host all all 0.0.0.0 0.0.0.0 reject

Here, we allow users on the machine to connect directly without a password,
but they cannot specify a different name.

Users can connect to the local loopback interface and specify a username and
password (md5 encrypted). We also include IPv6 addresses for completeness.

We then have a list of trusted hosts (well, just one) that allows a particular
user access to a particular database from a particular machine. Note that if you
use schemas (see above), the database name will most likely be the same for all
users.

Finally, we round out the file with an explicit ”reject” statement to prevent all
other connections.

1.3.4 Allowing Remote Access

By default, the database only listens on the local loopback interface for network
connections. This is fine if all your database applications are hosted on the
same server (e.g., you’re running the database on the same machine as your
web server, and the web server is the only client of the database). However, if
you need to allow remote machines access to the database, you’ll need to change
this behavior.

Edit the configuration file postgresql.conf. Find the variable listen addresses

and set it to *:

listen_addresses = ’*’

14



1.3.5 Autovacuum

From time to time, a PostgreSQL database must be vacuumed. This process
reclaims lost space in the database, prevents transaction ID wraparound, and
generally keeps the database in good working order.

Starting in version 8.1, you can enable an ”autovacuum” process that runs
concurrently with the database engine. This prevents the need for a manual
vacuum by the database administrator.

In the postgresql.conf file, change the following lines:

stats_start_collector = on

stats_row_level = on

autovacuum = on

You may tweak the other settings as you see fit; we currently use the default
timeouts and load factors for autovacuuming.

1.3.6 Logging

PostgreSQL can log to STDERR, Syslog, or to a file. To prevent logs from filling
up our system logs, we redirect all log output to files.

In the postgresql.conf file, change the following lines:

log_destination = ’stderr’

redirect_stderr = on

log_directory = ’../log’

log_filename = ’postgresql-%Y-%m-%d_%H-%M-%S.log’

log_rotation_age = 86400

client_min_messages = notice

log_min_messages = notice

log_min_error_statement = error

log_line_prefix = ’%t %d %u@%h’

1.3.7 Tweaking Kernel Memory Parameters

PostgreSQL works quite well ”out of the box” but can benefit from some ad-
ditional tuning. For high database loads, tuning becomes necessary to keep the
database running smoothly.

There are many things to tweak in PostgreSQL; an annotated guide to some of
these settings are available at the following links:

http://www.varlena.com/GeneralBits/Tidbits/annotated conf e.html

15

http://www.varlena.com/GeneralBits/Tidbits/annotated_conf_e.html


http://www.powerpostgresql.com/PerfList/

PostgreSQL benefits from larger amounts of memory being made available to
the database engine. Specifically, you may wish to turn up the amount of shared
memory available. On Mac OS X, the default amount of shared memory is 4MB;
we turn this up to 128MB.

Changing the kernel parameters requires use of the sysctl command. To make
the changes permanent, you can create (or edit) the /etc/sysctl.conf file.

Mac OS X

Under Mac OS X (10.3.9 or later), you should add the following lines to /etc/sysctl.conf
(the example below assumes 128MB of shared memory):

kern.sysv.shmmax=134217728

kern.sysv.shmmin=1

kern.sysv.shmmni=32

kern.sysv.shmseg=8

kern.sysv.shmall=32768

Note that you need to add all five values, even if you’re using the defaults for
some of them (in the example above, we are only using non-default values for
shmmax and shmall). Mac OS X triggers on the fifth value to set up the shared
memory system, and the changes become permanent (until reboot) after that
point. If you don’t set all five, the change doesn’t take, and will be overwritten
by the Mac OS X defaults.

Linux

Under Linux, you should add the following lines to /etc/sysctl.conf (the
example below assumes 128MB of shared memory):

kernel.shmall=134217728

kernel.shmmax=134217728

1.3.8 PostgreSQL Shared Memory Parameters

Once you’ve set the kernel’s memory parameters (and rebooted if necessary),
you can configure PostgreSQL to take advantage of this memory.

Using our system shared memory amout of 128MB, here are some suggested
tweaks to postgresql.conf. Note that the settings shown are for PostgreSQL
8.2; if you use an earlier version you may not be able to use the ”MB” and ”kB”

16

http://www.powerpostgresql.com/PerfList/


suffixes for values, and must instead convert them to ”pages”. See the comments
of the file for page size information.

Allocate all but 32MB of the shared memory to the PostgreSQL shared buffer
cache:

shared_buffers = 96MB

This gives a chunk of shared memory over to PostgreSQL to cache table entries
for faster searching.

You may also allocate 128MB (assuming your system has enough free memory)
to the ”maintenance work” memory:

maintenance_work_mem = 128MB

This setting is used for VACUM, ANALYZE, and CREATE INDEX statements,
and so can speed up those operations.

1.3.9 Speeding Up Disk Access

PostgreSQL uses a write-ahead log (WAL) to commit its changes. To ensure
consistency, the database engine writes these log files just before comitting a
transaction, and then flushes the log to disk using fsync.

While this process preserves data consistency (a good thing), it does slow the
database down, as the logs must be flushed.

To speed up this process, there are a few steps we can take to speed up database
operations. Note: some of these operations are dangerous in the sense that
they can cause the database to possibly lose data.

• First, mount the data directory of the database on its own disk. Ideally,
this should be a fast disk (RAID 1+0 is recommended for optimum per-
formance). RAID 0 is fast, but unable to withstand failures. At the same
time, RAID 1 is fault-tolerant, but has slow write performance. The risk
of doing this is directly linked to the stability of the disk.

We used to have Apple Xserve hardware, which has a maximum of 3 SCSI
drives. Therefore, RAID 1+0 is not possible. We opted for a RAID 1 setup
with a write-back cache (and a read-ahead for reads, though this isn’t as
important). The write-back cache gives reasonable write performance and
the RAID 1 gives excellent read performance. In the event of a power
failure, we have a UPS and generator to prevent data loss in the cache.

17



We have since moved to a Linux-based Compaq box with 18 drives, orga-
nized into two logical arrays running RAID 1+0. This gives us maximum
redundancy with increased speed.

• Next, consider mounting the pg xlog subdirectory of the data directory
on its own disk. This is the directory that contains the write-ahead logs, so
making it independent from the regular database store helps speed access.
Again, you must balance the reliability of the drive with the possible speed
increases.

• Finally, you can tweak the fsync and wal sync method parameters. These
affect how the database writes the WAL out to disk. Note that turning
off fsync can speed up writes significantly, but can be very danger-
ous. If the WAL files become corrupted, the database may be unable to
automatically recover in the event of a system crash or power failure.

1.4 PostgreSQL Usage

In general, interaction with PostgreSQL occurs in three major ways:

1. Server Management commands, used to create or delete entire databases.
Creation of users and their permissions is also frequently done through ex-
ternal commands. Finally, full backups and restores using human-readable
file formats are performed using external utilities.

2. Manual database interaction, using commands entered at a command
prompt via a special database shell. Most often used to test queries, or
perform small maintenance tasks.

3. Programatic access using a language that supports direct communication
with the database. Usually, these are SQL statements sent from the pro-
gram to the database, with the program receiving and interpreting the
results. Examples of languages that can communicate with PostgreSQL
include (but are not limited to) Perl, Java, PHP, and C.

1.4.1 Server Management

Most server management is performed using special binaries that are included
with the PostgreSQL distribution. Note that the binaries may reside on a special
path on your system (especially under Mac OS X), so if you don’t seem to have
the binaries installed, be sure to search in the same directory tree as the database
itself.

18



All commands have well-documented manual pages. Copies of the documenta-
tion are also available on the PostgreSQL web site.

:createuser / dropuser

Creates a database user credential. These credentials are frequently used for
remote access to a database, and usually include a username/password pair.

The command takes several options, which describe the capabilities of the user.
Read the documentation for the command carefully, and only allow the mini-
mum privileges necessary for the user.

:createdb / dropdb

Creates or destroys a database. A database is a related group of tables that are
accessed under a common name. It is possible (and highly likely) that you will
have several databases run by a single instance of PostgreSQL.

This command supports a few options, including the --owner flag, which lets
you specify a user who ”owns” (has full administrative control over) the database.
Usernames must be created using the createuser command (described above).

:pg dump/pg dumpall/pg restore

Commands to back up and restore a database, or entire cluster of databases.
pg dump only dumps a single database, while pg dumpall saves the contents of
all the databases in the cluser. pg restore will restore a database from the
output produced from dumping the database.

The dumpfiles used by these commands are in plain text (or may be compressed
using gzip. As such, they are highly portable, but not terribly space-efficient.
Also, they are not easily used for incremental or differential backups (see later
sections of this document for alternatives). As such, these utilities should be
used only for periodic or transition-based full backups.

1.4.2 Manual Interaction

The command psql launches a database shell, which allows the user to send SQL
statements directly to the database. Additionally, a small subset of PostgreSQL-
specific commands are supported (mostly for querying the schema and data
definitions).

To launch psql, you normally include a database name to connect to, a username
to connect with, and a hostname to connect to (though you may omit any of
these options if the defaults suffice). Thus, a typical invocation looks like:

psql -d mydatabase -U myusername -h localhost

19



Once connected, you can enter SQL statements directly at the prompt, termi-
nated by a semicolon. The statements will execute, and any results (or errors)
will be returned directly to the screen. On recent versions, large result sets will
be piped to a paging program (such as less) for easy viewing.

To disconnect from the shell, type ^D (control-d).

1.4.3 Programatic Access

Programatic access usually requires a library call from within the application.
Generally, the application must connect to the database, issue SQL commands,
retrieve the results of these commands, and then disconnect from the database.
Each library handles this process differently, so a full treatment is beyond the
scope of this document.

In general, you will need the following information in order to connect to Post-
greSQL from an application:

• The name of the database

• A username to connect under

• The password that goes with the username specified

• The hostname to connect to

As a very basic example, here is a small Perl program that connects to a
fictitious database and executes a small query:

use DBI;

# Connect to the DB

my $dbh = DBI->connect(’DBI:Pg:dbname=mydatabase;host=127.0.0.1’,

’myusername’, ’mypassword’,

{ PrintError => 0, RaiseError => 0 } )

or die ("Could not connect to database: " . $DBI::errstr);

# Prepare the query

$sth = $dbh->prepare("SELECT * FROM widgets")

or die ("Could not prepare statement: " . $dbh->errstr);

# Execute the query

$sth->execute()

or die ("Could not execute database query: " . $dbh->errstr);

# Fetch the results into a perl hashref

my $results = $sth->fetchall_arrayref({});

# Disconnect when done

$dbh->disconnect();

20



Other languages will use different syntax and library calls, but the general for-
mat remains similar to what we’ve described above. Consult your language’s
documentation for more information.

1.5 Backing Up

PostgreSQL contains utilities for backing up and restoring an entire database:
pg dump, pg dumpall, and pg restore. However, these utilities are focused on
backing up entire databases in order to perform complete restores of a database.
While these kinds of backups are helpful, they are time-consuming and quickly
become out-of-date on a busy database.

PostgreSQL also supports a ”hot” version of backup, by relying on its Write-
Ahead Logging (WAL) capabilities. For consistency, PostgreSQL always writes
any transaction to a special log file before changing the database. In the event of
a system crash, this log file can be ”replayed” so as to complete any in-progress
transactions.

We can use the WAL as a form of incremental backup; if we take a base
backup of the entire database and store every WAL file generated from that
point onwards, we essentially have a collection of data that represents the entire
database.

Because the WAL files are generated regularly, we can back each one up as it is
created. Since the files are small, we can back each up as it is created, ensuring
a near-exact copy of the database at all times.

Suffield uses a hybrid approach for database backups: we take regular full dumps
of the database to ensure easy restoration. Additionally, we use the WAL to keep
up-to-the-minute backups of the database to prevent data loss.

1.5.1 Suffield Overview

Here at Suffield, we have a single master PostgreSQL server. This server has
a spare disk drive in it, which we use for ”warm” backups of the database.
Additionally, we spool these backups to a remote host on a daily basis for added
peace of mind.

Here is a basic overview of how the backups work on our machine. The following
process is executed once daily (usually late at night):

• We take a full dump backup of the database to our secondary disk on the
database server. This file is also backed up to a remote host.

21



• We start a new PITR checkpoint backup, archiving the old PITR backup
remotely.

• The database archives WAL files one at a time as they are rolled over.
As part of the WAL archive, the files are backed up remotely at the same
time.

1.5.2 The “postgresql archive“ Script

To support our PostgreSQL backups, we have written a Perl script called postgresql backup.
It takes care of all the different types of backups, and includes a mode that runs
all the backups in the correct order. Once a day, we invoke this mode to per-
form the full database backups. The rest of the time, the script is called by the
database to archive the WAL files.

The following section describes the setup and use of this script.

Preparation

The script requires a small amount of preparation in order to work properly.

1. First, you must set aside space on a local filesystem to store database
backup files. Ideally, this should be on a separate disk from the database
to prevent simple hardware failures from corrupting the backups. The
space must be readable and writable by the user performing the backups
(we suggest using the postgres user, as it has full access to the database).

sudo mkdir /Volumes/Space/PostgreSQL-Backup

sudo mkdir /Volumes/Space/PostgreSQL-Backup/dump

sudo mkdir /Volumes/Space/PostgreSQL-Backup/pitr

sudo touch /Volumes/Space/PostgreSQL-Backup/lockfile

sudo chown -R postgres:postgres /Volumes/Space/PostgreSQL-Backup

The lines above show the creation of the directory structure, along with
a lockfile (necessary for the proper operation of the script). The final line
owns the directories to the specified user so they can write to them.

2. Next, you must create space on your remote host to back up the files. We
use our own rsync snapshot scripts to perform the remote archiving, so
our directory structure is set up to work with those scripts. If you use a
different archiving scheme (for example, just a pure rsync call), you can
use whatever paths work for you.

If you’re using SSH keys to allow the remote logins, you should create
those keys at this time and install them properly on the client and server
machines.

22



Our setup also includes postgresql-*.conf files that match our remote
host and path information. These files are read by the rsync snapshot

scripts to perform the backups.

Configuration

Confirm that any external scripts or configuration files (such as those that go
with rsync, or our rsync snapshot scripts) are correctly installed and config-
ured.

Execution

Copy the LaunchDaemon plist for PostgreSQL backups to the /Library/LaunchDaemons/
directory on the database server. Once copied, schedule the job for execution
using launchd:

sudo launchctl load -w /Library/LaunchDaemons/org.suffieldacademy.postgresql-backup.plist

The job should run at the time specified in the plist file. You can confirm that
it is running by checking either its generated log file (logated in $PGDIR/log)
or the system log (where the script logs by default).

1.6 Restoring From Backup

If the worst should ever happen, you’ll need to restore your PostgreSQL database
from your backups. Depending on the method(s) you use to back up the database,
restoration will either be to the latest full SQL dump of the cluster, or a point-
in-time recovery.

1.6.1 Point-In-Time Recovery (PITR)

PITR requires a raw backup of the database cluster files, along with a copy
of the write-ahead log (WAL) files generated since the raw backup. Note: the
WAL files are stored in an architecture-specific format (e.g., PowerPC, Intel x86,
etc), so you cannot restore accross platforms using this method. If you have to
move to a different machine, you must use a raw SQL dump (see below).

With PITR, it is possible to restore the database to a specific point in time
(rather than just a full backup). For example, if you accidentally blew away
an important section of the database, you could recover it up until (but not

23

http://web.suffieldacademy.org/ils/netadmin/docs/software/postgresql/docs/../LaunchDaemons/org.suffieldacademy.postgresql-backup.plist


including) the bad command. The instructions below do not cover this use of
PITR, but the procedure is largely the same. Follow the instructions below, and
when the time comes to create a recovery.conf file, add the options for the
last transaction date you would like to restore (see the official documentation
for more information).

The instructions in this section are adopted from the offical PostgreSQL docu-
mentation on the subject. For more information, please visit the official docu-
mentation site:

http://www.postgresql.org/docs/8.1/static/backup-online.html#BACKUP-PITR-
RECOVERY

1. Stop the backup script and database, if they’re running:

sudo launchctl unload -w /Library/LaunchDaemons/org.suffieldacademy.postgresql-backup.plist

sudo launchctl unload -w /Library/LaunchDaemons/org.postgresql.postmaster.plist

2. If you have space, move the current database cluster directory to a safe
location (in case you need to get back to it):

sudo mv /Library/PostgreSQL8/data /Library/PostgreSQL8/broken-data

If you don’t have room to keep the whole cluster, you should keep a copy
of the pg xlog subdirectory (in the data directory), as you may need the
WAL files it contains

3. Restore the raw database files (the data directory), and ensure that they
have the correct file permissions. You will need to copy the database files
off of your backup server (or disk) using rsync, scp, cp, or another transfer
tool. For example:

sudo rsync -auvze ssh root@backup-server:/Snapshot/Backups/postgresql/data/ \

/Library/PostgreSQL8/data/

(The above line should be changed to use your actual host names and
paths.)

Once you have them on the server, own them to the database user:

sudo chown -R postgres:postgres /Library/PostgreSQL8/data/

4. Next, you must create a recovery.conf file, which PostgreSQL inter-
prets as a signal to recover from a previous backup. Normally, one must
give a recovery command to find the archived WAL files. In our case, we
back these files up with the base backup, and so they do not need to be
”found” at all. Therefore, we specify a bogus recovery command. Place
the following in the file /Library/PostgreSQL8/data/recovery.conf:

24

http://www.postgresql.org/docs/8.1/static/backup-online.html#BACKUP-PITR-RECOVERY
http://www.postgresql.org/docs/8.1/static/backup-online.html#BACKUP-PITR-RECOVERY


# use your path to the "false" command

restore_command = ’/usr/bin/false’

Make the file writable by the database owner (the database renames the
file when it’s done with it):

sudo chown postgres /Library/PostgreSQL8/data/recovery.conf

1. Optionally, you may wish to modify the pg hba.conf file to disallow logins
to the database. This will prevent users from getting access to the data
before the restore is complete.

2. Start PostgreSQL:

sudo launchctl load -w /Library/LaunchDaemons/org.postgresql.postmaster.plist

The postmaster will go into recovery mode and proceed to read through
the archived WAL files it needs. Upon completion of the recovery process,
the postmaster will rename recovery.conf to recovery.done (to prevent ac-
cidentally re-entering recovery mode in case of a crash later) and then
commence normal database operations.

3. Inspect the contents of the database to ensure you have recovered to where
you want to be. If not, return to the beginning of the recovery instructions
and try again. If all is well, let in your users by restoring pg hba.conf to
normal.

4. Don’t forget to start the backup process again if you stopped it:

sudo launchctl load -w /Library/LaunchDaemons/org.suffieldacademy.postgresql-backup.plist

At this point, your database should be back up and running just as before.
Double-check your log files to ensure that operation appears reliable.

1.6.2 SQL Dump Recovery

If you do not (or cannot) use PITR, you can restore the database from a pure
SQL dump produced by the pg dumpall command. This procedure is far simpler
than PITR, in that you only need to issue a single command. However, there
are a few drawbacks to keep in mind:

• The SQL dump is only current to the time it was taken. Depending on
the time of the backup, the database may have changed significantly.

• You cannot recover a SQL dump to a particular point in time; you must
restore the entire file or nothing at all.

25



• You cannot perform an incremental restore; the entire database must be
emptied and then fully restored from the file.

A SQL dump does have the main advantage that it is portable accross platform
architectures, and frequently portable accross versions of PostgreSQL. If you
need to move a database from one machine to another, or between different
versions of PostgreSQL, you should use the dump method.

Preparing for Restoration

As mentioned above, you cannot restore over an existing database. Therefore,
you will need to destroy (or move) the current database before attempting re-
covery.

1. Stop the backup script and database, if they’re running:

sudo launchctl unload -w /Library/LaunchDaemons/org.suffieldacademy.postgresql-backup.plist

sudo launchctl unload -w /Library/LaunchDaemons/org.postgresql.postmaster.plist

2. If you have space, move the current database cluster directory to a safe
location (in case you need to get back to it):

sudo mv /Library/PostgreSQL8/data /Library/PostgreSQL8/broken-data

If you don’t have room to back up the entire cluster, you must save any
configuration files that contain non-default values. This includes (but is
not limited to) pg hba.conf and postgresql.conf.

1. Initialize a new database cluster directory:

sudo -u postgres /Library/PostgreSQL8/bin/initdb -D /Library/PostgreSQL8/data

You now have an empty database cluster, and are ready for the next phase of
the restore.

Restoring Configuration Files

To restore the cluster to a working state, you must first restore the configuration
files from the old cluster directory. This includes files like pg hba.conf and
postgresql.conf, and may include others as well.

Before restoring, you may wish to limit access to the database by modifying
pg hba.conf. This will prevent users from interacting with the database while
it is being restored.

26



Once you’ve got the configuration files in place, you should start the database
engine:

sudo launchctl load -w /Library/LaunchDaemons/org.postgresql.postmaster.plist

Restoring the Cluster

This section is based heavily on the official PostgreSQL documentation. If you
need more information, please consult the following URL:

http://www.postgresql.org/docs/8.1/static/backup.html#BACKUP-DUMP-RESTORE

Your configuration files should be restored at this point, and the database engine
should be running. You’re now ready to read in the SQL file containing all your
data.

Note: loading large amounts of data can take a long time, especially if there
are indices, foreign constraints, or other time-consuming consistency checks.
You may wish to review the PostgreSQL documentation on large data loads; it
discusses performance tips for loading large data sets. It specifically has this to
say about using pg dump:

By default, pg dump uses COPY, and when it is generating a
complete schema-and-data dump, it is careful to load data before
creating indexes and foreign keys. So in this case the first several
guidelines are handled automatically. What is left for you to do
is to set appropriate (i.e., larger than normal) values for mainte-
nance work mem and checkpoint segments before loading the dump
script, and then to run ANALYZE afterwards.

For more information, please refer to the documentation:

http://www.postgresql.org/docs/8.1/static/populate.html

When you’re ready to perform the load, you must run the restore command as
the postgres user. You can do this using the sudo command:

sudo -u postgres psql -f database_backup_file.sql postgres

The last postgres in the database to initially connect to. Since the cluster is
empty at this point, the only database you can connect to is the postgres

database (which is created automatically as part of the initdb command).

The data load may take a long time, depending on the amount of data and the
speed of your system. Wait for the load to fully complete before moving on to
the next step.

27

http://www.postgresql.org/docs/8.1/static/backup.html#BACKUP-DUMP-RESTORE
http://www.postgresql.org/docs/8.1/static/populate.html


Once the load is complete, you should log in to the database and make sure that
the data appear to be restored correctly. At this point, the database is ready
for use, though some additional steps should be taken to improve performance.
You may allow clients back into the database at this time.

To help with query performance, you should perform a ANALYZE on each database
to update all the housekeeping information in the database. You can do this with
the following command on every database in the cluster :

sudo -u postgres psql -c ’ANALYZE’ <dbname>

Substitute the datbase name for <dbname>, running the command as many
times as is necessary for each database in the cluser.

Your database should now be restored, and ready to go!

28


	PostgreSQL
	Introduction
	Installation
	Debian Linux
	Mac OS X

	Configuration
	Schemas
	Tablespaces
	Host-based Authentication
	Allowing Remote Access
	Autovacuum
	Logging
	Tweaking Kernel Memory Parameters
	PostgreSQL Shared Memory Parameters
	Speeding Up Disk Access

	PostgreSQL Usage
	Server Management
	Manual Interaction
	Programatic Access

	Backing Up
	Suffield Overview
	The ``postgresql_archive`` Script

	Restoring From Backup
	Point-In-Time Recovery (PITR)
	SQL Dump Recovery



