
Syslog (Centralized Logging and Analysis)

Jason Healy, Director of Networks and Systems

Last Updated Mar 18, 2008

2

Contents

1 Syslog (Centralized Logging and Analysis) 5

1.1 Introduction . 5

1.1.1 Logging Software . 5

1.1.2 Analysis Software . 6

1.1.3 Intended Audience . 6

1.2 syslog-ng . 6

1.2.1 General Concepts . 7

1.2.2 Installation . 7

1.2.3 Configuration . 7

1.3 Syslog Client Configuration . 11

1.4 Logcheck . 11

1.4.1 Obtaining the Software 12

1.4.2 Usage . 12

1.4.3 Syslog-NG and Logcheck 12

1.4.4 Basic Configuration . 13

1.4.5 Custom Rules . 14

3

4

Chapter 1

Syslog (Centralized Logging
and Analysis)

Last updated 2008/03/18

1.1 Introduction

In a perfect world, nothing would ever go wrong. Unfortunately (at least in the
network world), nothing is ever perfect, and things do go wrong from time to
time. One of the best ways to diagnose problems is through the use of logging.
Most applications and systems generate log messages, either on a regular basis
(status logging) or when something goes wrong (error logging). Collecting and
analysing these logs is a great way to track down problems.

Unfortunately, keeping track of all the logs on every piece of equipment can be
a daunting task. This document explains how to collect all application logs in
a central location for easier analysis. We also discuss software to monitor and
report on anomolies found in the log files.

1.1.1 Logging Software

At Suffield, we mainly use machines and appliances that adhere to the syslog
log format. This format has been used in the UNIX world for quite some time,
and it is readily supported by many operating systems, appliances, and software
packages.

Syslogs are normally collected by a syslog daemon. The daemon we have

5

chosen to use is called syslog-ng (for ”Syslog Next Generation”). It allows for
complex setups with multiple sources and destinations of logging, along with
built-in pattern-matching conditions and custom hooks for external analysis.

1.1.2 Analysis Software

While syslog-ng does possess some filtering and reporting capabilities, we prefer
to run our logs through an external tool. This allows us to search the logs for
unusual behavior (failed logins, warning messages, etc.) so we can take corrective
action as soon as possible.

1.1.3 Intended Audience

This document assumes that the reader is proficient in the installation and
configuration of a UNIX-like operating system. We will be using the Debian
flavor of Linux for our examples, though most other unices should operate in a
similar manner.

1.2 syslog-ng

We use a drop-in replacement for the standard sylog daemon called sylog-ng.
It receives messages from remote hosts in the standard syslog format, but it
provides many nice features that other daemons lack. Of particular interest is
its ability to route messages to different files, external databases, or external
programs. The system is very flexible, and works well even for large-scale in-
stallations.

For more information on syslog-ng, including detailed installation instructions,
the latest downloads, and other information, please see the main syslog-ng web
site:

http://www.balabit.com/products/syslog ng/

Additionally, you may wish to read O’Reilly’s Building Secure Servers with
Linux book. Chapter 12 is available for free online, and deals specifically with
syslog-ng (as well as some of the other topics discussed here). The book’s website
is:

http://www.oreilly.com/catalog/linuxss2/

6

http://www.balabit.com/products/syslog_ng/
http://www.balabit.com/products/syslog_ng/
http://www.oreilly.com/catalog/linuxss2/

1.2.1 General Concepts

Syslog-ng works with three major components in its configuration:

1. sources of log information (e.g., network sockets)

2. destinations of log information (e.g., files)

3. filters that match certain log information

Syslog-ng combines these three things into one or more log pipelines. This gives
you the ability to pipe multiple sources into a certain destination, send one
source to many destinations, or send only certain logs to particular destinations
based on filters.

1.2.2 Installation

Many systems have pre-built packages of syslog-ng available, without the need
for source. We use Debian linux, and the install is as simple as:

apt-get install syslog-ng

This will create a sample configuration file in /etc/syslog-ng, which you can
customize.

1.2.3 Configuration

All configuration occurs in the file /etc/syslog-ng.conf. The sections below
discuss changes to the defaults provided under Debian. Note that some instal-
lations may use different defaults for other values; check the documentation for
more information about special options.

Global Options

All options belong in a configuration stanza named options{} (the configuration
values go between the { curly braces }).

We use this section to set global timeouts and retries for logs and network
connections. In some cases, these values can be overridden in later sections of
the files.

Additionally, this section deals with use of DNS to resolve hostnames. The
important values here are:

7

• chain hostnames(no): tell the server not to report every hostname be-
tween the source and receiver; just use the source’s address.

• keep hostname(no): do not trust the hostname used by the source; replace
it with the name queried from DNS. Note that if you do not have proper
reverse DNS set up, this can cause syslog-ng to block while it waits for
DNS queries.

• use dns(yes): allow the server to make DNS queries for host names.

• use fqdn(yes): store the full name of the source, rather than just the
short hostname.

Other values exist for tweaking the caching and timeouts of DNS lookups; see
the configuration file for more information.

Sources

Syslog-ng must be told which sources to listen on to receive messages. The most
frequently used ones are:

• internal(): This source is generated from within syslog-ng itself. Any
status messages that syslog-ng creates will be sent from this source, so
you should include it in at least one log statement to capture its output.

• file(): This reads from a special file on the local system. Under Linux,
you’ll want to use this to read /proc/kmsg. Note that this does not ”tail”
a regular file; it only works with special files designed to work as pipes.

• unix dgram(): This reads from a local UNIX socket in a connectionless
fashion (use unix stream() for connection-oriented sockets). On Linux,
this is used to read the special file /dev/log.

• udp(): This causes syslog-ng to listen to a UDP port on the network in-
terface for messages from other systems. Since we’re building a centralized
logging host, you’ll definitely want to use this option. A TCP option also
exists, though it is less frequently used (most clients default to UDP).

You’ll need to declare one or more sources, each using one or more of these
sources. We recommend lumping the sources into broader source categories. For
example, /proc/kmsg, internal(), and /dev/log are all local to the machine
that is running syslog-ng. Therefore, you may wish to merge them all into a
single source that tracks local machine messages.

To declare a source, simply use the source parameter, give it a name, and
enclose all the sources in { curly braces }:

8

source s_local { unix_dgram("/dev/log"); internal() };

source s_remote { udp(); };

Filters

Filters determine which messages will be routed to which destinations. Filters
can test every aspect of an incoming message (often using regular expressions),
making them extremely powerful. You can match source IP, subnet, syslog pri-
ority, log facility, or even strings embedded in the messages.

You can combine conditions with ”and” and ”or”, as well as negate them with
”not”. This allows you to build up a complex filter out of many simple matching
rules.

To declare a filter, use a filter parameter, give it a name, and enclose the
matching rules inside { curly braces }:

filter f_simple { match("foobar"); };

filter f_complex { facility(mail) and (level(info .. err) or host("bob")); };

Destinations

Once messages have been filtered, they must be sent to a destination. Syslog-ng
can use many different types of destinations, including plain files, pipes, other
syslog hosts, and external programs.

Files are the most frequently used destination in a typical setup, as they are
permanently stored, easy to search, and work in the same way that a traditional
syslog daemon does. We will primarily examine files in this section.

However, it is worth noting two other destinations, though we will not discuss
them further:

• The program() call forks to a new process and sends messages to it via
STDIN. This is an easy way to quickly get messages to an external pro-
gram. However, syslog-ng only forks once per startup of the daemon,
which means that the program is tied to the execution of syslog-ng it-
self.

• The pipe() call sends messages to a named pipe on the system. This can
be useful when sending messages to a completely separate process (such
as xconsole or a custom script that’s waiting for input). It is more robust
than program(), as the log files can be ”dropped off” at the pipe and later
read by a different program with different privileges or parameters.

9

Destinations may have permissions, owners, groups, sync times, and other op-
tions that override the ones defined in the global options{} section of the config
file. You may wish to tweak some of these settings (for example, setting a lower
sync rate on busy log files).

Destinations may also set a template, which defines how the logs are formatted
as they are output. Each template contains a formatting string which can contain
macros that are expanded to their values at the time of output. For example,
to format each line with the full date, host, and level of severity:

template("$FULLDATE $HOST [$LEVEL]: $MESSAGE");

Additionally, for the file() destination, you can use template macros in the
filename. This allows for simple writing to different files based upon content in
the message itself (such as date, time, or host).

Here is a sample output to file using a templated name, and specially formatted
output:

destination d_file { file("/var/log/$YEAR.$MONTH.$DAY/$HOST"

template("$FULLDATE $HOST [$LEVEL]: $MESSAGE")

);

};

Log Rules

Once you’ve defined sources, destinations, and filters, you’re ready to combine
them into log rules. A log rule simly ties together a source and destination,
and optionally allows for a filter to only allow certain messages to match the
rule. In its simplest form, a log rule looks like this:

log { source(s_local); filter(f_important); destination(d_varlog); };

(Assuming that s local, f important, and d varlog have already been set up
earlier in the file.)

You are free to provide multiple sources, filters, and destinations in a single log
statement, allowing you to easily create complex log setups.

Finally, newer versions of syslog-ng support a flags option in log rules. This
special option has three settings:

1. final means that once a message matches this rule, it is no longer consid-
ered for other log rules.

10

2. fallback means that this rule matches only if the message has not matched
any non-fallback rules so far (useful as a ”default” rule to catch unmatched
messages).

3. catchall means that only the filter and destination are used for this rule;
all possible message sources are used.

Thus, to make a rule that matches only unmatched messages, we might say:

log { source(s_local); destination(d_default); flags(fallback); };

You should create log statements that link up all the sources and destinations
that you will be using. Note that unless you use flags like ”fallback”, it is possible
for a log message to match more than one log rule, and thus be logged to more
than one destination.

1.3 Syslog Client Configuration

To send information to the central server from a machine running syslog, we
simply instruct the daemon to forward information to a remote host.

The simplest way to do this is to add a catch-all for every message in /etc/syslog.conf:

. @172.30.0.10

Then, restart your syslog daemon (using an init script, kill -HUP, or whatever
method your platform uses).

1.4 Logcheck

Once you have a centralized logging machine in place, its time to do something
with those logs. While it’s helpful to keep logs files for later review, it’s even
more helpful to automatcially scan log files for ”strange” events so they can be
reported. What constitutes a ”strange” event is up to you; you’ll need to decide
what sorts of events require further inspection.

At Suffield, we make use of the logcheck program to help us with automated
analysis. The program scans log files at regular intervals, and e-mails any lines
that look suspicious. In this way, we are automatically alerted when certain log
messages appear.

11

1.4.1 Obtaining the Software

We use the Debian flavor of Linux, which includes a prepackaged version of
logcheck. Simply install the tool from the command line with:

apt-get install logcheck

If you don’t use Debian, your distribution may still include a package for
logcheck. Consult your distribution’s package database.

If you can’t find it, you can download the upstream version directly:

http://sourceforge.net/projects/sentrytools

1.4.2 Usage

Normally, logcheck is run from cron (or some other scheduling process) on a
regular basis (e.g., once an hour). The script checks a list of log files for specific
patters, and reports any that are found.

Logcheck includes three basic levels of reporting functionality: workstation,
server, and paranoid. Each level includes everything in the levels below (i.e.,
server includes all of workstation). You should choose a level that reports enough
information, without flooding you with too many false reports. Our approach
has been to select the highest level (paranoid), and then selectively disable
warnings using custom patterns.

Note that logcheck defaults to reporting all unrecognized messages. In other
words, if you do not have a pattern which explicitly matches a message type,
logcheck will include it as suspicious. This is good, as it ensures that you receive
messages that you haven’t necessarily dreamed up a configuration for.

1.4.3 Syslog-NG and Logcheck

Logcheck requires a list of log files to check. Unfortunately, our syslog-ng setup
files logs away in many different files (by date, category, program, etc.). To make
running logcheck easier, we have added an additional destination file to syslog-
ng. We funnel many different types of logs to this file, so that logcheck only
needs to inspect a single file.

Because this log file is a copy of data logged elsewhere, we don’t need to keep
it around when we’re done. Thus, we use syslog-ng’s ability to name files by
day to set up a weekly rotation where old files get overwritten by new ones.
This allows for a short amount of history (one week) without wasting too much
space.

12

http://sourceforge.net/projects/sentrytools

A sample syslog-ng stanza might look like this:

destination df_logcheck {

file("/var/log/logcheck/$WEEKDAY.log"

template("$FULLDATE: $HOST ($FACILITY/$LEVEL) [$PROGRAM] $MSGONLY\n")

template_escape(no)

remove_if_older(518400) # overwrite if older than 6 days

);

};

You can configure syslog-ng to send any (or even all) data to this file in addition
to the regular files you would otherwise use.

1.4.4 Basic Configuration

At the minimum, you must provide a list of log files to check, the patterns you
wish to check for, and an e-mail address to send reports to.

Begin by editing the /etc/logcheck/logcheck.conf file. Choose a REPORTLEVEL
value (we use ”paranoid”), and customize SENDMAILTO to point to a live e-mail
address in your organization. You may also wish to enable SUPPORT CRACKING IGNORE

if you’re getting cracking-level events that are false positives (if you aren’t, leave
this at its default value for now).

Next, edit /etc/logcheck.logfiles to include the path to the log files you
wish to check. If you’re using our syslog-ng config above, you’d list each weekday
rotation file:

/var/log/logcheck/Sun.log

/var/log/logcheck/Mon.log

... and so on ...

/var/log/logcheck/Sat.log

Finally, feel free to edit /etc/logcheck/header.txt to include a custom mes-
sage at the start of each e-mail.

Depending on your setup, you may need to enable the logcheck script in cron.
Under Debian, you must edit the file /etc/cron.d/logcheck and uncomment
the line that starts with:

#2 * * * * logcheck ...

Once you’ve made these edits, logcheck should begin checking your logfiles and
mailing you reports. The crontab line above would run logcheck every hour
at 2 minutes past the hour. Check your distribution’s documentation for more
details.

13

1.4.5 Custom Rules

You should let logcheck run during a period of normal traffic on your network.
You’ll receive several alerts, and probably some false positives. Once you’ve
verified that a false positive is really false, you can write rules to exclude the
message from future reports.

Before we get to writing our own rules, here’s a brief introduction to rule pro-
cessing in logcheck. Each message in a log file is scanned, and then checked
against the following conditions (in order):

1. Does the message match a rule in cracking.d? If so, the message is marked
as an attack alert, and processing continues.

2. Does the message match a rule in cracking.ignore.d, and is the global
SUPPORT CRACKING IGNORE enabled? If so, the message is ignored and
processing stops. If the message does not match, but has been marked as
an attack alert, then it is included in the outgoing e-mail, and processing
stops. Otherwise, processing continues.

3. Does the message match a rule in violations.d? If so, the message is
marked as a security event, and processing continues.

4. Does the message match a rule in violations.ignore.d? If so, the mes-
sage is ignored and processing stops. If the message does not match,
but has been marked as a security event, then it is included in the
outgoing e-mail, and processing stops. Otherwise, processing continues.

5. Does the message match a rule in ignore.d? If so, the message is ignored
and processing stops. Otherwise, the message is included in the outgoing
e-mail.

As you can see, the rules follow an ”include/exclude” pattern, with a default
”include” at the end for any unmatched messages. When you create your own
rules, you must be careful to match rules at the correct level (so as to not mask
rules at a lower level), and to only match exactly what you need.

In general, you should write ”include” rules wherever you think most appropriate
(e.g., cracking or violation), and write ”exclude” rules at the same level as
the rule that creates the false positive.

All matching rules in logcheck are written as extended regular expressions (as
understood by the egrep program). A full discussion of regular expressions is
far beyond the scope of this document; please consult other internet sources or
books for more information. Also, feel free to ”steal” from existing rules that
are known to work!

14

To create a rule, simply code up a regular expression and drop it in a file. We
suggest that you name the files with a local prefix (e.g., ”suffield”). For example,
if you are getting log messages similar to the following:

[dhcpd] Wrote 0 new dynamic host decls to leases file.

You could ignore them by placing ignore rules in a file called suffield-dhcpd,
and saving the file into the appropriate ignore.d directory. The ignore rule
itself might look like:

\[dhcpd\] Wrote [0-9]+ new dynamic host decls to leases file

(The ”[0-9]+” is a regular expression pattern; if you don’t know what it does,
you should consult external resources for more information.)

You may place more than one regular expression in a file, one per line. Remember
the order that rules are evaluated in; you may need to create overly-broad
violation rules, and then selectively ignore certain cases.

15

	Syslog (Centralized Logging and Analysis)
	Introduction
	Logging Software
	Analysis Software
	Intended Audience

	syslog-ng
	General Concepts
	Installation
	Configuration

	Syslog Client Configuration
	Logcheck
	Obtaining the Software
	Usage
	Syslog-NG and Logcheck
	Basic Configuration
	Custom Rules

