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In this lecture, we look at a powerful idea, abstract data types, which enable us to separate how we use a
data structure in a program from the particular form of the data structure itself. Abstract data types address
a particularly dangerous dependence, that of a client of a type on the type’s representation. We’ll see why
this is dangerous and how it can be avoided. We’ll also discuss the classification of operations, and some
principles of good design for abstract data types.

1 User-defined Types

In the early days of computing, a programming language came with built-in types (such as integers, booleans,
strings, etc.) and built-in procedures, eg. for input and output. Users could define their own procedures:
that’s how large programs were built.

A major advance in software development was the idea of abstract types: that one could design a pro-
gramming language to allow user-defined types too. This idea came out of the work of many researchers,
notably Dahl (the inventor of the Simula language), Hoare (who developed many of the techniques we now
use to reason about abstract types), Parnas (who coined the term information hiding and first articulated the
idea of organizing program modules around the secrets they encapsulated), and here at MIT, Barbara Liskov
and John Guttag, who did seminal work in the specification of abstract types, and in programming language
support for them (and developed 6170!).

The key idea of data abstraction is that a type is characterized by the operations you can perform on
it. A number is something you can add and multiply; a string is something you can concatenate and take
substrings of; a boolean is something you can negate, and so on. In a sense, users could already define their
own types in early programming languages: you could create a record type date, for example, with integer
fields for day, month and year. But what made abstract types new and different was the focus on operations:
the user of the type would not need to worry about how its values were actually stored, in the same way that
a programmer can ignore how the compiler actually stores integers. All that matters is the operations.

In Java, as in many modern programming languages, the separation between built-in types and user-
defined types is a bit blurry. The classes in java.lang, such as Integer and Boolean are built-in; whether
you regard all the collections of java.util as built-in is less clear (and not very important anyway). Java
complicates the issue by having primitive types that are not objects. The set of these types, such as int and
boolean, cannot be extended by the user.

2 Classifying Types and Operations

Types, whether built-in or user-defined, can be classified as mutable or immutable. The objects of a mutable
type can be changed: that is, they provide operations which when executed cause the results of other oper-
ations on the same object to give different results. So Date is mutable, because you can call setMonth and
observe the change with the getMonth operation. But String is immutable, because its operations create
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new string objects rather than changing existing ones. Sometimes a type will be provided in two forms, a
mutable and an immutable form. StringBuffer, for example, is a mutable version of String (although the
two are certainly not the same Java type, and are not interchangeable).

The operations of an abstract type are classified as follows:

� Creators create new objects of the type. A constructor may take an object as an argument, but not an
object of the type being constructed.

� Producers create new objects from old objects; the terms are synonymous. The concat method of
String, for example, is a producer: it takes two strings and produces a new one representing their
concatenation.

� Mutators change objects. The add method of ArrayList, for example, mutates a list by adding an
element to the end.

� Observers take objects of the abstract type and return objects of a different type. The size method of
ArrayList, for example, returns an integer.

We can summarize these distinctions schematically like this:

constructor: t
���

T
producer: T

� � t � � T
mutator: T

� � t ��� void
observer: T

� � t � � t

These show informally the shape of the signatures of operations in the various classes. Each T is the
abstract type itself; each t is some other type. In general, when a type is shown on the left, it can occur more
than once. For example, a producer may take two values of the abstract type; string concat takes two strings.
The occurrences of t on the left may also be omitted; some observers take no non-abstract arguments (e.g.,
size), and some take several.

Here are some examples of abstract data types, along with their operations:

int is Java’s primitive integer type. int is immutable, so it has no mutators.

creators: the numeric literals 0, 1, 2, ����� .
producers: arithmetic operators 	 , 
 , � , �
observers: comparison operators ==, !=, <, >
mutators: none (it’s immutable)

CardSuit (from PS1) represents the set of card suits: clubs, diamonds, hearts, spades. This type is not only
immutable, it is finite — in fact, since it uses the type-safe enumeration pattern, only 4 CardSuit
objects ever exist in the program. See the Bloch book for more details about typesafe enumerations, a
very nice way to implement small finite types.

creators: the constants CLUBS, DIAMONDS, HEARTS, and SPADES.
producers: none
observers: getName, compareTo, toString, etc.
mutators: none (immutable)
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Card (from PS1) represents the set of playing cards. This type is also finite, but instead of having 52 con-
stants, one for each card, the class has a constructor instead. This means that you can create two
different Java objects representing the Ace of Spades, but both objects are the same abstract value
as far as the abstract data type is concerned. This is why you should always use equals to compare
immutable objects, not ==.

creators: Card(CardValue, CardSuit) constructor
producers: none
observers: getSuit, getValue, equals, compareTo, toString, etc.
mutators: none (immutable)

Deck (from PS1) represents the set of decks of cards. This type is mutable — which means it’s also infinite.
Although it’s true that there are only a finite number of deck configurations (e.g., 52! orderings of full
decks), you can tell two decks apart by mutating one of them. So mutable data types are theoretically
infinite (but practically subject to the constraints of memory).

creators: Deck() constructor
producers: none
observers: listCards, toString, etc.
mutators: addCard, removeCard, shuffle, dealCards. Notice that dealCards is a mutator that
returns something other than void. It returns an Iterator of the cards that were dealt off the deck.
So the type signatures above aren’t hard-and-fast rules. What really defines a mutator is whether the
operation’s spec includes modifies this.

BasicList (from PS2) is a slimmed-down version of Java’s List data type, representing a mutable sequence of
objects.
creators: BasicList() constructor
producers: none
observers: contains, get, indexOf, size
mutators: add, remove

This classification gives some useful terminology, but it’s not perfect. In complicated data types, there
may be operations that are producers and mutators, for example. Some people use the term producer to
imply that no mutation occurs.

3 Designing an Abstract Type

Designing an abstract type involves choosing good operations and determining how they should behave. A
few rules of thumb:

� It’s better to have a few, simple operations that can be combined in powerful ways than lots of complex
operations.

� Each operation should have a well-defined purpose, and should have a coherent behavior rather than
a panoply of special cases. We probably shouldn’t add a sum operation to BasicList, for example. It
might help clients who work with lists of Integers, but what about lists of Strings? Cards? Nested
lists? All these special cases would make sum a hard operation to understand and use.
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� The set of operations should be adequate; there must be enough to do the kinds of computations
clients are likely to want to do. A good test is to check that every property of an object of the type
can be extracted. For example, if there were no get operation, we would not be able to find out
what the elements of a list are. Basic information should not be inordinately difficult to obtain. The
size method is not strictly necessary, because we could apply get on increasing indices, but this is
inefficient and inconvenient.

� The type may be generic: a list or a set, or a graph, for example. Or it may be domain-specific: a street
map, an employee database, a phone book, etc. But it should not mix generic and domain-specific
features. It wouldn’t make sense to put a domain-specific method like dealCards into the generic
type BasicList, for example. Conversely, Deck shouldn’t have an add method that accepts arbitrary
Objects.

� A good abstract data type should be representation independent. This means that the use of an abstract
type is independent of its representation (the actual data structure or data fields used to implement it),
so that changes in representation have no effect on code outside the abstract type itself. For example,
the operations offered by BasicList are independent of whether the list is represented as a linked list
or as an array.

� You won’t be able to change the representation of an ADT at all unless its operations are fully specified
with preconditions (requires), postconditions (effects), and frame conditions (modifies), so that clients
know what to depend on, and you know what you can safely change.

4 Rep Exposure

Finally, and perhaps most important, a good abstract data type should preserve its own invariants. An
invariant is a property of a program that is always true. Immutability is one crucial invariant that we’ve
already encountered: once created, an immutable object should always represent the same value, for its
entire lifetime.

When an ADT preserves its own invariants, reasoning about the code becomes much easier. If you can
count on the fact that Strings never change, you can rule out that possibility when you’re debugging code
that uses Strings — or when you’re trying to establish an invariant for another ADT. Contrast that with a
string class that guarantees that it will be immutable only if its clients promise not to change it. Then you’d
have to check all the places in the code where the string might be used.

We’ll see many interesting invariants next lecture. Let’s focus on immutability for now. As a specific
example, here’s a class we’ve seen in an earlier lecture:

// Trans represents an immutable bank transaction.
class Trans {

int amount;
Date date;

Trans(int amt, Date d) {
// effects: makes a transaction of amt dollars on date d

amount = amt;
date = d;

}
}
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How do we guarantee that Trans objects are immutable — that, once a transaction is created, its date
and amount can never be changed?

The first threat to immutability comes from the fact that clients can (in fact, must!) directly access its
fields. So nothing’s stopping us from writing code like this:

Trans t = new Trans(10, new Date ());
t.amount += 10;

This is a trivial example of representation exposure, meaning that code outside the class can modify
the representation directly. Rep exposure like this threatens not only invariants, but also representation
independence. We can’t change the implementation of Trans without affecting all the clients who are
directly accessing those fields.

Fortunately, Java gives us language mechanisms to deal with this kind of rep exposure:

// Trans represents an immutable bank transaction.
class Trans {

private int amount;
private Date date;

public Trans(int amt, Date d) {
// effects: makes a transaction of amt dollars on date d

amount = amt;
date = d;

}

public int getAmount {
// effects: returns amount of this transaction in dollars

return amount;
}

public Date getDate {
// effects: returns date of this transaction

return date;
}

}

The private and public keywords indicate which fields and methods are accessible only within the class
and which can be accessed from outside the class.

But that’s not the end of the story: the rep is still exposed! Consider this (perfectly reasonable) client
code that uses Trans:

1. Trans makeNextPayment(Trans t) {
2. // effects: returns a transaction of same amount as t, one month later
3. Date d = t.getDate();
4. d.setMonth (d.getMonth() + 1);
5. // ... deal with December and day 28/30/31 problem ...
6. return new Trans (t.getAmount(), d);
7. }
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We’ve left some code out for simplicity, but the idea here is that makeNextPayment takes a transaction
and should return another transaction for the same amount but dated a month later. (The code we left out
concerns rolling December over to January, and dealing with days that don’t exist in the next month, like
January 31.) The makeNextPayment method might be part of a system that schedules recurring payments.

What’s the problem here? The getDate call in Statement 3 returns a reference to the same date object
referenced by transaction t. So when the date object is mutated in Statement 4, this affects the date in t as
well:

(Date)
February 1, 2004

date

March

(Trans)

d

t

Trans’s immutability invariant has been broken. The problem is that Trans leaked out a reference to a
mutable object that its invariant depended on. We exposed the rep, in such a way that Trans can no longer
guarantee that its objects are immutable. Perfectly reasonable client code created a subtle bug.

We can patch this kind of rep exposure by defensive copying: making a copy of a mutable object to
avoid leaking out references to the rep. Here’s the code:

// Trans represents an immutable bank transaction.
class Trans {

private int amount;
private Date date;

public Trans(int amt, Date d) {
// effects: makes a transaction of amt dollars on date d

amount = amt;
date = d;

}

public int getAmount {
// effects: returns amount of this transaction in dollars

return amount;
}

public Date getDate {
// effects: returns date of this transaction

return new Date (date);
}

}

But we’re not done yet! There’s still rep exposure. Consider this (again perfectly reasonable) client
code:

1. List makeYearOfPayments (int amount) {
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2. // effects: returns a list of 12 monthly payments of identical amounts
3. List list = new ArrayList ();
4. Date date = new Date ();
5. for (int i = 0; i < 12; i++) {
6. list.add (new Trans (amount, date));
7. date.setMonth (date.getMonth () + 1);
8. // ... deal with December and day 28/30/31 problem ...
9. }
10. return list;
11. }

This code intends to advance a single Date object through 12 months, creating a transaction for each
date. But notice that the constructor of Trans saves the reference that was passed in, so all 12 transaction
objects end up pointing to the same date:

(Date)
February 1, 2004

date

March

(Trans)

date

elts[0]

(Trans)

date

(ArrayList)

elts[11]

...

April ...

Again, the immutability of Trans has been violated. We can fix this problem too by judicious defensive
copying, this time in the constructor:

// Trans represents an immutable bank transaction.
class Trans {

private int amount;
private Date date;

public Trans(int amt, Date d) {
// effects: makes a transaction of amt dollars on date d

amount = amt;
date = new Date (d);

}

public int getAmount {
// effects: returns amount of this transaction in dollars

return amount;
}

public Date getDate {
// effects: returns date of this transaction

return new Date (date);
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}
}

In general, you should carefully inspect the argument types and return types of all your ADT opera-
tions. If any of the types are mutable, make sure your implementation doesn’t return direct references to its
representation.

You may object that this seems wasteful. Why make all these copies of dates? Why can’t we just solve
this problem by careful specification:

public Trans (int amount, Date date) {
// requires: caller must never mutate date again!
// effects: returns date of this transaction

return date;
}
...
public Date getDate {
// effects: returns date of this transaction
// requires: caller must never mutate the date returned!

return date;
}

This approach is sometimes taken when there isn’t any other reasonable alternative – for example, when
the mutable object is too large to copy efficiently. But the cost in your ability to reason about the program,
and your ability to avoid bugs, is enormous. In the absence of compelling arguments to the contrary, it’s
almost always worth it for an abstract data type to guarantee its own invariants, and preventing rep exposure
is essential to that.

An even better solution is to prefer immutable types. If Date had been immutable, then we would have
ended this section after talking about public and private. No rep exposure would have been possible.

5 Summary

Abstract data types are characterized by their operations. Representation independence makes it possible to
change the representation of a type without its clients being changed. An abstract data type that preserves
its own invariants is easier and safer to use. Java language mechanisms like access control help ensure rep
independence and invariants, but representation exposure is a trickier issue, and needs to be handled by
careful programmer discipline.
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