
Transitioning to IPv6 as a
Preferred Network Protocol

Jason Healy – jhealy@suffieldacademy.org

Connecticut Education Network Member Presentation

October 22, 2024

Summary

• The reality of IPv4 and IPv6 has changed
• Dual-stack wasn't supposed to be forever

• IPv6 is becoming a necessity
• Maintaining multiple stacks is a pain
• NAT is NAT

This process takes time… start now!

• Debating the merits of IPv6
• Extensive introduction to IPv6

What this talk is not:

Why IPv6-Mostly[1]?

[1] https://www.ietf.org/archive/id/draft-ietf-v6ops-6mops-00.html

https://www.ietf.org/archive/id/draft-ietf-v6ops-6mops-00.html

Checklist (1/2)

❑ Revise system and purchasing requirements to mandate

IPv6 compatibility

❑ Obtain public IPv6 address allocation
❑ Plan IPv6 subnets

❑ Deploy IPv6 RA on test subnet, with internet reachability

❑ Convert servers to dual-stack (ready for v6-only clients)

❑ Adjust Security Policies and ACLs
❑ Publish IPv6 internal servers in DNS (alongside IPv4)

❑ Make IPv6 available to all subnets (alongside IPv4)

Pre-IPv6 Deployment

Dual-Stack Deployment

Checklist (2/2)

❑ Build NAT64, test internally

❑ Build DNS64, test as opt-in (alternate DNS server address)

❑ Switch to DNS64 as default for clients (dual-stack)

❑ Deploy IPv6 RA PREF64 (if supported on router)

❑ Deploy DHCPv4 Option 108 ("IPv6-only Preferred")

Optionally/Eventually:

❑ Turn off IPv4 completely for nodes!

Transition Mechanisms

Deprecate IPv4

Pre-IPv6 Deployment

IPv6 Micro-review

• 128-bit addresses, represented as 8 groups of 4 hex digits:
 2001:0db8:1234:5678:0000:90ab:cdef

• Can "zero-compress" and remove leading zeros:
 2001:db8:1234:5678::90ab:cdef

• Overwhelming default of 64 bits for network, 64 bits for address:
 2001:db8:1234:5678::/64

• Multiple addresses per node are common

• Extensive use of multicast, Neighbor Discovery instead of ARP

 (but that's for another talk)

IPv6 Router Advertisements

• Periodic broadcasts, or
response to Router

Solicitations

• Contains options that help

replace DHCP

• Contains address info to
support SLAAC

ICMPv6 Type: Router Advertisement (134) Code: 0
Flags: 0x40
 0... = Managed address configuration: Not set
 .0.. = Other configuration: Not set
 ..0. = Home Agent: Not set
 ...0 0... = Prf (Default Router Preference): Medium (0)
 0.. = ND Proxy: Not set
 00 = Reserved: 0
Router lifetime (s): 1800
Reachable time (ms): 0
Retrans timer (ms): 0
IMPv6 Option (Source link-layer address : de:ad:be:ef:f0:0d)
IMPv6 Option (Recursive DNS Server 2001:db8:1337:1::53)
IMPv6 Option (Prefix information : 2001:db8:1337:2::/64)
 Type: Prefix information (3) Length: 4 (32 bytes)
 Prefix Length: 64
 Flag: 0xc0
 1...= On-link flag(L): Set
 .1.. = Autonomous address-configuration flag (A): Set
 ..0. = Router address flag(R): Not set
 ...0 0000 = Reserved: 0
 Valid Lifetime: Infinity (4294967295)
 Preferred Lifetime: Infinity (4294967295)
 Reserved
 Prefix: 2001:db8:1337:2::
IMPv6 Option (DNS Search List Option example.org)

Specification Updates
Need to make sure you are holding vendors accountable!

Update any specifications you provide to vendors, and include language
mandating IPv6-only.

Example: Suffield Academy's construction specifications (27-20-00)[1]:

[1] https://web.suffieldacademy.org/ils/netadmin/Suffield-Academy-Communications-Standards-universal.pdf

This doesn't magically make things work, but it helps with
accountability.

IP version support. Suffield Academy is transitioning away from IPv4; the protocol is now
deprecated and is not supported on new equipment. New equipment that uses IP to communicate
must support operating using only IPv6. It must be possible to deploy, configure, and operate the
equipment fully using only IPv6. Some critical requirements are provided below; vendors wishing
to familiarize themselves with IPv6-only requirements are directed to the US OMB Memorandum
M-21-07 as a starting point...

https://web.suffieldacademy.org/ils/netadmin/Suffield-Academy-Communications-Standards-universal.pdf

Obtain IPv6 Addresses

How does
1,208,925,819,614,629,174,706,176

addresses sound?

• A /48 is large enough to carve up into 65535
standard-size /64 subnets (same amount as

dividing 10/8 into individual /24 subnets)

Ask CEN for allocation!

• Handoff and routing are just like IPv4 (next-
hop, default route, etc.)

2001:db8:1337:SSSS::H

10.SSS.SSS.H

Allocated Prefix Subnet Host portion

(48) (16) (64)

(8) (8+8) (8)

• You'll get a /48, so 2001:db8:NNNN

Plan IPv6 Subnets

Now that you have all this IPv6 space, it's time to divide it up

• Recommend nybble[1] (4-bit) boundary alignment for administrative
groupings[2]

• Lots of ways to do this (by site, building, function)

• We are a single campus, and assigned one subnet per VLAN ID:

 2001:db8:1337:VVV::

• Give it some thought before you start; planning makes rollout easier

[1] AKA nibble, hexit, semi-octet, half-byte, tetrade, quadbit, quartet

[2] https://www.ripe.net/media/documents/BasicIPv6-Appendix-AddressingPlanHowTo.pdf

VLAN 2 — 2001:db8:1337:2::
VLAN 37 — 2001:db8:1337:25::

Examples:

https://www.ripe.net/media/documents/BasicIPv6-Appendix-AddressingPlanHowTo.pdf

Dual-Stack Deployment

Testing Dual-Stack: Routers
• Identify a test segment: VLAN 2, IPv6 subnet 2001:db8:1337:2::/64

• Assign router address in this prefix and enable router advertisements

with recursive DNS server specified

vlan 2 ! (Cisco)

interface Vlan2
no ip address
 ipv6 address 2001:DB8:1337:2::1/64
 ipv6 enable
 ipv6 nd ra dns server 2001:DB8:1337::53 200
!

set vlans test vlan-id 2 # (Juniper)
set vlans test l3-interface irb.2

set interfaces irb unit 2 family inet6 address 2001:db8:1337:2::1/64

set protocols router-advertisement interface irb.2 prefix 2001:db8:1337:2::/64
set protocols router-advertisement interface irb.2 dns-server-address \
 2001:db8:1337::53 lifetime 86400

Testing Dual-Stack: Nodes

Nodes should now autoconfigure an IPv6 address in your prefix:

en0: flags=88e3<UP,BROADCAST,SMART,RUNNING,NOARP,SIMPLEX,MULTICAST> mtu 1500
 options=6460<TSO4,TSO6,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
 ether fa:ca:de:de:ad:00
 inet6 fe80::f2ca:deff:fede:ad00%en0 prefixlen 64 secured scopeid 0xf
 inet6 2001:db8:1337:2:f2ca:deff:fede:ad00 prefixlen 64 autoconf secured
 inet6 2001:db8:1337:2:cafe:babe:8bad:f00d prefixlen 64 autoconf temporary
 ...
 media: autoselect
 status: active

Your DNS servers should also show up, possibly merged with IPv4.

Try it out!

% ping6 2600::1
PING6(56=40+8+8 bytes) --> 2600::1
16 bytes from 2600::1, icmp_seq=0 hlim=54 time=88.186 ms
...

Convert Servers to Dual-Stack

You want your new IPv6 network to be able to talk to something!

/etc/network/interfaces

allow-hotplug eth0

auto-configure IPv6
iface eth0 inet6 auto

can also have static v6
iface eth0 inet6 static
 address 2001:db8:1337:2::42:0/64

legacy v4
iface eth0 inet dhcp

May need to add "listen" directives to daemons to activate IPv6

Update Security Policies and ACLs

• Some nodes will prefer IPv6 if it is available (Happy Eyeballs)

• If "allowlist" ACLs only have IPv4 addresses listed, this may block or
delay traffic

• Duplicate your security policies in IPv6

• Test with a scratch box that has IPv4 turned off

• Add IPv6 addresses to service monitoring

Publish IPv6 DNS Records

• Create "AAAA" records for internal servers

• Can coexist with IPv4 ("A" records), CNAME, MX, etc

• Test continuously (again, with IPv4 off if possible)

Deploy IPv6 Dual-Stack On All Subnets

1. Keep IPv4 on and available

2. Add IPv6 subnets to all VLANs

3. ???

4. PROFIT!!!

Suffield Academy after
dual-stack deployment

Red is IPv4
Greens are IPv6 (50+%)

Transition Mechanisms

Why Transition?

Under dual-stack, things seem pretty good, but…

• Does not address IPv4 shortages

• Now have two network stacks to debug

• Address selection rules can be difficult to understand

• Happy Eyeballs can hide disfunction

• Goal is to reduce or eliminate IPv4 on the nodes

Intro to NAT64

• Mechanism to allow single-stack IPv6 nodes to reach IPv4 resources

• When node wants to reach an IPv4 host, it "embeds" the IPv4 address
in an IPv6 address

• Requires a router at the network edge to "unembed" IPv4 and forward
to the IPv4 resource

• Thus, IPv4 addresses are still needed, but only on this NAT64 router,
and not on the host

• Several flavors of NAT64 exist, we will primarily discuss "Stateful

NAT64"[1]

[1] https://www.rfc-editor.org/rfc/rfc6146

https://www.rfc-editor.org/rfc/rfc6146

NAT64 Example (1/5)

Our setup:

• IPv6-only node: 2001:db8:1337:2::6

• IPv4-only server: 172.64.151.192 (slashdot.org)

• PLAT box that changes the address family

• NAT64 shared public IPv4 address: 203.0.113.4

• Dedicated NAT64 prefix: 64:ff9b::/96
 (AKA the "well-known prefix")

• L3 route on LAN directing NAT64 prefix to PLAT:
64:ff9b::/96 next-hop 2001:db8:1337:624::1

v4 Internet

NAT64 PLAT

slashdot.org

IPv6 Node

172.64.151.192

203.0.113.4

2001:db8:1337:2::6

v6 LAN

2001:db8:1337:624::1

(64:ff9b::/96)

NAT64 Example (2/5)

• Node queries DNS for slashdot.org

• Receives A record answer of 172.64.151.192

• Converts to hex: ac.40.97.c0

• Adds NAT64 prefix: 64:ff9b::ac40:97c0

• Sends packet via IPv6

v4 Internet

NAT64 PLAT

slashdot.org

IPv6 Node

172.64.151.192

203.0.113.4

2001:db8:1337:2::6

v6 LAN

2001:db8:1337:624::1

64:ff9b::ac40:97c0

IPv6

We will talk about how
this happens in a minute!

NAT64 Example (3/5)
• PLAT receives IPv6 packet

• Extracts IPv4 portion of address: ac.40.97.c0

• Translates to IPv4: 172.64.151.192

• Replaces packet source with public IPv4
address: 203.0.113.4

• Stores NAT state of IPv6 source/port, IPv4

source/port, IPv4 dest/port

• Sends packet via IPv4
v4 Internet

NAT64 PLAT

slashdot.org

IPv6 Node

172.64.151.192

203.0.113.4

2001:db8:1337:2::6

v6 LAN

2001:db8:1337:624::1

(64:ff9b::/96)

IPv4

NAT64 Example (4/5)

• Slashdot receives packet

• Slashdot generates reply to PLAT public IPv4

• PLAT looks up state using packet source:
172.64.151.192

• PLAT finds 172.64.151.192 associated with

state to IPv6 address 2001:db8:1337:2::6

v4 Internet

NAT64 PLAT

slashdot.org

IPv6 Node

172.64.151.192

203.0.113.4

2001:db8:1337:2::6

v6 LAN

2001:db8:1337:624::1

(64:ff9b::/96)

IPv4

NAT64 Example (5/5)
• PLAT translates address family, embeds source

address in the NAT64 prefix, sends IPv6 packet
back to our node

• Node sees that response matches the original

source address it sent packet to

• Node is not aware that packet translation took
place; traffic looks like normal IPv6

v4 Internet

NAT64 PLAT

slashdot.org

IPv6 Node

172.64.151.192

203.0.113.4

2001:db8:1337:2::6

v6 LAN

2001:db8:1337:624::1

64:ff9b::ac40:97c0

IPv6

NAT64 Support
Free and Open Source:

• Jool (Linux)

 https://nicmx.github.io/Jool/en/index.html

• PF (OpenBSD)

https://man.openbsd.org/pf.conf.5#af-to

• TAYGA (Linux)

 http://www.litech.org/tayga/

• FD.io VPP (Linux)

https://s3-docs.fd.io/vpp/24.10/developer/plugins/nat64.html

Also, commercial vendors (A10, PaloAlto, Fortigate, Cisco, etc)

Can test some for free:

https://go6lab.si/current-ipv6-tests/nat64dns64-public-test/

https://nicmx.github.io/Jool/en/index.html
https://man.openbsd.org/pf.conf.5
http://www.litech.org/tayga/
https://s3-docs.fd.io/vpp/24.10/developer/plugins/nat64.html
https://go6lab.si/current-ipv6-tests/nat64dns64-public-test/

NAT64 Summary

• Allows IPv6-only nodes to communicate with IPv4-only resources

• Only works with "big three": TCP, UDP, ICMP

• Has similar address sharing properties to NAT44

• Stateless varieties exist, typically need 1:1 v4:v6 address mapping

Back to our earlier question:
How do nodes know to use mapped addresses???

DNS64

• Created to work with NAT64 PLAT
• Tricks hosts into using mapped addresses for IPv4-only resources

• No special client support needed
• Easy to deploy (point nodes to a DNS64 server)

unbound DNS64 proxy (uses upstream server for recursion)
server:
 dns64-prefix: 64:ff9b::0/96
 module-config: "dns64 validator iterator"

forward-zone:
 # forward all queries
 name: "."
 forward-addr: 2001:db8:1337::53
 # don't cache (we'll let upstream do that)
 forward-no-cache: yes
 # don't try to recurse on our own if the upstream fails
 forward-first: no

DNS64 The Easy Way

Many public DNS providers also offer DNS64 with the WKP:

• nat64.net[1]

 2a01:4ff:f0:9876::1
 2a00:1098:2c::1
 2a01:4f8:c2c:123f::1

• Google DNS[2]

 2001:4860:4860::6464
 2001:4860:4860::64

• Cloudflare DNS[3]

 2606:4700:4700::64
 2606:4700:4700::6400

[1] https://nat64.net

[2] https://developers.google.com/speed/public-dns/docs/dns64
[3] https://developers.cloudflare.com/1.1.1.1/infrastructure/ipv6-networks/

https://nat64.net/
https://developers.google.com/speed/public-dns/docs/dns64
https://developers.cloudflare.com/1.1.1.1/infrastructure/ipv6-networks/

DNS64 In Action

Dual-stack node, normal DNS server:

Node DNS Server

Give me AAAA records for slashdot.org

Sorry, no AAAA records exist (NXDOMAIN)

Give me A records for slashdot.org

OK: 172.64.151.192

Node only receives IPv4 addresses, so communicates over IPv4

DNS64 In Action

IPv6-only node, normal DNS server:

Node DNS Server

Give me AAAA records for slashdot.org

Sorry, no AAAA records exist (NXDOMAIN)

No IPv6 addresses, so unable to communicate

DNS64 In Action

IPv6-only node, DNS64 server:

Node DNS64 Server

Give me AAAA records for slashdot.org

OK: 64:ff9b::ac40:97c0

Node receives IPv6 answer, proceeds normally. Packets are routed to
NAT64 PLAT which handles translation to IPv4 for delivery.

No AAAA exist (NXDOMAIN)
However, an A record exists: 172.64.151.192
I'll convert that to hex and add my NAT64 prefix

DNS64 Drawbacks

• Breaks DNSSEC
• Breaks if clients choose their own DNS server

• Breaks with legacy software that opens AF_INET only
• Breaks when IPv4 literals are used instead of hostnames
 (protocols with embedded addresses or lazy programmers)

ping6 -c 3 64:ff9b::808:808
PING 64:ff9b::808:808(64:ff9b::808:808) 56 data bytes
64 bytes from 64:ff9b::808:808: icmp_seq=1 ttl=115 time=6.02 ms
64 bytes from 64:ff9b::808:808: icmp_seq=2 ttl=115 time=6.15 ms
64 bytes from 64:ff9b::808:808: icmp_seq=3 ttl=115 time=6.15 ms
--- 64:ff9b::808:808 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 6.018/6.107/6.152/0.063 ms

ping -c 3 8.8.8.8
ping: connect: Network is unreachable

CLAT / 464XLAT

• Client-side transLATor is like the "opposite" of NAT64 (NAT46?)[1]

• Still requires the use of NAT64 / PLAT (builds on it)

• Double translation: 4 to 6 (CLAT), then 6 back to 4 (PLAT)

 (hence the name "464", 4 to 6 to 4)

• Node appears to be dual-stack to software on the host (even though
it's IPv6-only); IPv4 software thinks it's regular IPv4 with NAT

• Used extensively in mobile networks (e.g., T-Mobile)

• Been working for over a decade!

[1] https://www.rfc-editor.org/rfc/rfc6877

https://www.rfc-editor.org/rfc/rfc6877

CLAT (Discrete)

CLAT
NAT64
PLAT

IPv4
Node

IPv4
(and possibly IPv6)

segment

IPv6-only ISP
Network

IPv4 Internet

IPv6 Internet

Translate IPv4
to embedded

IPv6 (64:ff9b::)

Translate
embedded
IPv6 to IPv4

• CLAT is a router (e.g., home router, cable modem)
• CLAT translates "inside" IPv4 to IPv6 for transport across ISP network

• PLAT translates back to IPv4 at the network edge

CLAT (Embedded)

NAT64
PLAT

IPv6-only ISP
Network

IPv4 Internet

IPv6 Internet

Translate
embedded
IPv6 to IPv4

• CLAT is a virtual router in the OS of the device
• All IPv4 packets are embedded in IPv6 before leaving the device

• PLAT still translates back to IPv4 at the network edge

• This means your entire network can be

 IPv6, and just need PLAT at the edge

IPv6-only Node
CLAT

IPv6 Interface

Virtual IPv4
Client Interface

Virtual IPv4
Router Interface

Translate IPv4
to embedded

IPv6 (64:ff9b::)

CLAT Pros and Cons

Pros:

• All IPv4 traffic is translated (not just addresses from DNS)

• Physical equipment not required (good for enterprise / BYOD)

• DNSSEC works (not messing with DNS)

Cons:

• CLAT functionality must exist on each device (more in a minute)

• CLAT must be configured with NAT64 prefix

CLAT Configuration
How do we configure and enable CLAT?

RFC 7050: PREF64 discovery via DNS
• Only requires working DNS64
• Not well-defined when to use CLAT or abandon IPv4

• Not granular (can't decide per-subnet)

RFC 8781: PREF64 discovery via IPv6 RA
• Doesn't require discovery
• More granular (per-subnet RA)

• Router support has been gradual, but rolling out now (check docs)

RFC 8925: IPv6-only preferred (DHCPv4 option 108)
• Tells node to not request IPv4 if supported (conserves addresses)
• More granular

• Works in conjunction with RFC750/RFC8781 to enable CLAT

https://www.rfc-editor.org/rfc/rfc7050
https://www.rfc-editor.org/rfc/rfc8781
https://www.rfc-editor.org/rfc/rfc8925.html

CLAT Client Support (Android)

Supported since Android 4.3 in 2013 (thanks, T-Mobile!)

Android 12+ supports RFC 8925 (DHCP 108)[1]

Supports RFC 8781 (PREF64 RA)[2]

[1] https://indico.cern.ch/event/1274792/contributions/5444353/attachments/2676554/4642104/IPv6%20mostly.pdf
[2] https://openwrt.org/docs/guide-user/network/ipv6/nat64

https://indico.cern.ch/event/1274792/contributions/5444353/attachments/2676554/4642104/IPv6%20mostly.pdf
https://openwrt.org/docs/guide-user/network/ipv6/nat64

CLAT Client Support (Apple)
• Supported since macOS 13.1, iOS 16 (and iPadOS/tvOS)

% ifconfig en0
en0: flags=88e3<UP,BROADCAST,SMART,RUNNING,NOARP,SIMPLEX,MULTICAST> mtu 1500
 options=6460<TSO4,TSO6,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
 ether fa:ca:de:de:ad:00
 inet6 fe80::f2ca:deff:fede:ad00%en0 prefixlen 64 secured scopeid 0xf
 inet6 2001:db8:1337:2:f2ca:deff:fede:ad00 prefixlen 64 autoconf secured
 inet6 2001:db8:1337:2:cafe:babe:8bad:f00d prefixlen 64 autoconf temporary
 inet 192.0.0.2 netmask 0xffffffff broadcast 192.0.0.2
 inet6 2001:db8:1337:2:7ac7:1e55:dead:d00d prefixlen 64 clat46
 nat64 prefix 64:ff9b:: prefixlen 96
 nd6 options=201<PERFORMNUD,DAD>
 media: autoselect
 status: active

% netstat -f inet -rn
Destination Gateway Flags Netif Expire
default 192.0.0.1 UGScg en0
...

• Need DNS64 as well?

CLAT Client Support (ChromeOS)

Since v114
• activated via DHCP option 108

• chrome://flags
• enable RFC8925
• reboot

No visible IPv4 CLAT[1], but IPv4-
only and IPv4 literals work:

[1] https://www.reddit.com/r/ipv6/comments/1abpp71/chromeos_supports_rfc_8925_in_a_nondefault/

https://www.reddit.com/r/ipv6/comments/1abpp71/chromeos_supports_rfc_8925_in_a_nondefault/

CLAT Client Support (Linux)

Userspace daemon only[1], no automatic behavior

We haven't found this necessary for servers:

• Recent software is IPv6-capable

• DNS64 handles most cases for outbound

• NAT64 SIIT handles inbound translation

[1] https://github.com/toreanderson/clatd

https://github.com/toreanderson/clatd

CLAT Client Support (Windows)

Has "supported" since Windows 10 (thanks, T-Mobile!)…

… but only when connected to an LTE device

Official plans for support in Windows 11 [1] …

… but nothing as of October 2024 (Windows 11 24H2) [2]

Like Linux, DNS64 and pure-IPv6 is still an option, but the possibility of
issues is higher

[1] https://techcommunity.microsoft.com/t5/networking-blog/windows-11-plans-to-expand-clat-support/ba-p/4078173
[2] https://mailarchive.ietf.org/arch/msg/v6ops/mPSMFY-StOgYMaNpAK-yflLyP8Q/

https://techcommunity.microsoft.com/t5/networking-blog/windows-11-plans-to-expand-clat-support/ba-p/4078173
https://mailarchive.ietf.org/arch/msg/v6ops/mPSMFY-StOgYMaNpAK-yflLyP8Q/

Deprecate IPv4

Procedure

Once dual-stack and DNS64 are operational, can start to deprecate IPv4

• Start by manually testing a node with IPv4 turned off
• Worst-case scenario
• May activate CLAT (macos/ios)

• Enable PREF64 RA (if available)

• Enable DHCP Option 108

The Secret Switch
Summer 2024, enabled DHCP 108 for guest and
student subnets

After return to school:

< 10 help desk tickets regarding network issues
(all but one were related to VPN malfunction)

Standardized testing (SAT), only one issue
(guest had IPv6 disabled on their machine)

(without telling anyone)

Major guest events (parent weekend, alumni weekend), no reported issues

DHCP server broke one day and we didn't notice for 12+ hours…

Results

Real-world measurements from our network, October 2024

• All-Apple campus (macos/ios), so YMMV
• BYOD allowed (a few Windows gaming PCs)
• DHCP 108 rolled out to students and guests, not for employees (yet)

• Counts show unique MAC with at least one address for that family
 (MAC is only counted once even if multiple addresses assigned)

Sample OU IPv4 IPv6

A Employees 228 224

A Students 36 746

A Guests 39 169

B Employees 242 238

B Students 37 772

B Guests 40 161

Next Steps

• Roll out DHCP 108 to all subnets (relatively easy)

Then, the "long tail" of IPv4…

• Begin restricting IPv4 DHCP to "known" clients

• Possibly pool non-IPv6-capable hosts in their own subnets

• Consider implementing intermediate CLAT for IPv4-only nodes so that
core infrastructure can be converted to IPv6-only

• Shut off IPv4 and DHCP completely once subnets appear fully IPv6

Gotchas

Gotchas (General IPv6)

Unfortunately, not all +

• ACL debugging

• Service configuration

• Legacy software

• Devices that suck (Nintendo switch, building management, IoT garbage)

• Loss of DHCPv4 "tracking" vs SLAAC (consider ND table scraping)

• Wifi / Security software not supporting multiple IPv6 addresses
 (see Linkova for details)

Gotchas (DNS64)

• Split-horizon (especially with RFC1918 addresses)

• Breaking DNSSEC

• Dealing with rogue client configuration

• Happy Eyeballs (may fall back to IPv4 if not explicitly IPv6-only)

Gotchas (NAT64 and CLAT)

• RFC1918 addresses and NAT64

• Non-TCP/UDP/ICMP protocols (VPNs)

• Embedded-IPv4 protocols (SIP)

• MTU woes (IPv4 to IPv6 reduces path MTU)

• Lack of device support (Windows, game consoles, IoT)

• Lack of testing (YouTube AppleTV app)

Worth It?

Worth It

• NAT64 + CLAT looks just like NAT44 to software

• Client support is getting quite good (c'mon Windows!)

• Time is right to shift to IPv6 as primary protocol and deprecate IPv4

• Get your growing pains out of the way now

Additional Resources
Jen Linkova at Google, Mission ImPossible: Turning IPv4 Off in an Enterprise Network:
• https://ripe87.ripe.net/wp-content/uploads/presentations/32-IPv6-Mostly-Office_-JenLinkova_RIPE87.pdf
• https://www.youtube.com/watch?v=hb98hAb5_W8 and https://ripe87.ripe.net/archives/video/1160/

Ondřej Caletka at RIPE:
• https://labs.ripe.net/author/ondrej_caletka_1/deploying-ipv6-mostly-access-networks/
• 2022 talk: https://www.ripe.net/media/documents/NLNOG_Ondrej.pdf

Jool "Introduction to IPv4/IPv6 Translation", has overview of multiple NAT64 modes with diagrams:
• https://nicmx.github.io/Jool/en/intro-xlat.html

RFC Draft IPv6-Mostly Networks: Deployment and Operations Considerations
• https://www.ietf.org/archive/id/draft-ietf-v6ops-6mops-00.html

RFC Draft IPv6 Address Accountability Considerations (discusses how to track IPv6 without using DHCP)
• https://datatracker.ietf.org/doc/html/draft-ccc-v6ops-address-accountability-00

RFC 8683 Additional Deployment Guidelines for NAT64/464XLAT in Operator and Enterprise Networks:
• https://www.rfc-editor.org/rfc/rfc8683

My "blog", very occasionally updated: https://web.suffieldacademy.org/~jhealy/

https://ripe87.ripe.net/wp-content/uploads/presentations/32-IPv6-Mostly-Office_-JenLinkova_RIPE87.pdf
https://www.youtube.com/watch?v=hb98hAb5_W8
https://ripe87.ripe.net/archives/video/1160/
https://labs.ripe.net/author/ondrej_caletka_1/
https://labs.ripe.net/author/ondrej_caletka_1/deploying-ipv6-mostly-access-networks/
https://www.ripe.net/media/documents/NLNOG_Ondrej.pdf
https://nicmx.github.io/Jool/en/intro-xlat.html
https://www.ietf.org/archive/id/draft-ietf-v6ops-6mops-00.html
https://datatracker.ietf.org/doc/html/draft-ccc-v6ops-address-accountability-00
https://www.rfc-editor.org/rfc/rfc8683
https://web.suffieldacademy.org/~jhealy/

	Opening and Summary
	Slide 1: Transitioning to IPv6 as a Preferred Network Protocol
	Slide 2: Summary
	Slide 3: Checklist (1/2)
	Slide 4: Checklist (2/2)

	Pre-IPv6 Deployment
	Slide 5
	Slide 6: IPv6 Micro-review
	Slide 7: IPv6 Router Advertisements
	Slide 8: Specification Updates
	Slide 9: Obtain IPv6 Addresses
	Slide 10: Plan IPv6 Subnets

	Dual-Stack Deployment
	Slide 11
	Slide 12: Testing Dual-Stack: Routers
	Slide 13: Testing Dual-Stack: Nodes
	Slide 14: Convert Servers to Dual-Stack
	Slide 15: Update Security Policies and ACLs
	Slide 16: Publish IPv6 DNS Records
	Slide 17: Deploy IPv6 Dual-Stack On All Subnets

	Transition Mechanisms
	Slide 18
	Slide 19: Why Transition?
	Slide 20: Intro to NAT64
	Slide 21: NAT64 Example (1/5)
	Slide 22: NAT64 Example (2/5)
	Slide 23: NAT64 Example (3/5)
	Slide 24: NAT64 Example (4/5)
	Slide 25: NAT64 Example (5/5)
	Slide 26: NAT64 Support
	Slide 27: NAT64 Summary
	Slide 28: DNS64
	Slide 29: DNS64 The Easy Way
	Slide 30: DNS64 In Action
	Slide 31: DNS64 In Action
	Slide 32: DNS64 In Action
	Slide 33: DNS64 Drawbacks
	Slide 34: CLAT / 464XLAT
	Slide 35: CLAT (Discrete)
	Slide 36: CLAT (Embedded)
	Slide 37: CLAT Pros and Cons
	Slide 38: CLAT Configuration
	Slide 39: CLAT Client Support (Android)
	Slide 40: CLAT Client Support (Apple)
	Slide 41: CLAT Client Support (ChromeOS)
	Slide 42: CLAT Client Support (Linux)
	Slide 43: CLAT Client Support (Windows)

	Deprecate IPv4
	Slide 44
	Slide 45: Procedure
	Slide 46: The Secret Switch
	Slide 47: Results
	Slide 48: Next Steps

	Gotchas
	Slide 49
	Slide 50: Gotchas (General IPv6)
	Slide 51: Gotchas (DNS64)
	Slide 52: Gotchas (NAT64 and CLAT)
	Slide 53: Worth It?
	Slide 54: Worth It

	Q&A
	Slide 55: Additional Resources

